No Arabic abstract
Gravitational backgrounds in d+2 dimensions have been proposed as holographic duals to Lifshitz-like theories describing critical phenomena in d+1 dimensions with critical exponent zgeq 1. We numerically explore a dilaton-Einstein-Maxwell model admitting such backgrounds as solutions. Such backgrounds are characterized by a temperature T and chemical potential mu, and we find how to embed these solutions into AdS for a range of values of z and d. We find no thermal instability going from the (Tllmu) to the (Tggmu) regimes, regardless of the dimension, and find that the solutions smoothly interpolate between the Lifshitz-like behaviour and the relativistic AdS-like behaviour. We exploit some conserved quantities to find a relationship between the energy density E, entropy density s, and number density n, E=frac{d}{d+1}(Ts+nmu), as is required by the isometries of AdS_{d+2}. Finally, in the (Tllmu) regime the entropy density is found to satisfy a power law s propto c T^{d/z} mu^{(z-1)d/z}, and we numerically explore the dependence of the constant c, a measure of the number of degrees of freedom, on d and z.
We show that three-dimensional massive gravity admits Lifshitz metrics with generic values of the dynamical exponent z as exact solutions. At the point z=3, exact black hole solutions which are asymptotically Lifshitz arise. These spacetimes are three-dimensional analogues of those that were recently proposed as gravity duals for scale invariant fixed points.
It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead to the dynamic connection at the horizon between the fluid and gravitational models in two dimension, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for the acoustic black hole via an intriguing connection between the gravitational-like dynamics of the acoustic horizon and thermodynamics. We obtain a universal form for the entropy of acoustic black holes, which has an interpretation similar to the entropic gravity. We also discuss the specific heat, and find that the derivative of the velocity of background fluid can be regarded as a novel acoustic analogue of the two-dimensional dilaton potential, which interprets why the two-dimensional fluid dynamics can be connected to the gravitational dynamics but difficult for four-dimensional case. In particular, when a constraint is added for the fluid, the analogue of a Schwarzschild black hole can be realized.
In arbitrary dimension, we consider a theory described by the most general quadratic curvature corrections of Einstein gravity together with a self-interacting nonminimally coupled scalar field. This theory is shown to admit five different families of Lifshitz black holes dressed with a nontrivial scalar field. The entropy of these configurations is microscopically computed by means of a higher-dimensional anisotropic Cardy-like formula where the role of the ground state is played by the soliton obtained through a double analytic continuation. This involves to calculate the correct expressions for the masses of the higher-dimensional Lifshitz black hole as well as their corresponding soliton. The robustness of this Cardy-like formula is checked by showing that the microscopic entropy is in perfect agreement with the gravitational Wald entropy. Consequently, the calculated global charges are compatible with the first law of thermodynamics. We also verify that all the configurations satisfy an anisotropic higher-dimensional version of the Smarr formula.
We report on the end state of nonaxisymmetric instabilities of singly spinning asymptotically flat Myers-Perry black holes. Starting from a singly spinning black hole in D=5,6,7 dimensions, we introduce perturbations with angular dependence described by m=2, m=3, or m=4 azimuthal mode numbers about the axis of rotation. In D=5, we find that all singly spinning Myers-Perry black holes are stable, in agreement with the results from perturbation theory. In D=6 and 7, we find that these black holes are nonlinearly stable only for sufficiently low spins. For intermediate spins, although the m=2 bar mode becomes unstable and leads to large deformations, the black hole settles back down to another member of the Myers-Perry family via gravitational wave emission; surprisingly, we find that all such unstable black holes settle to the same member of the Myers-Perry family. The amount of energy radiated into gravitational waves can be very large, in some cases more than 30% of the initial total mass of the system. For high enough spins, the m=4 mode becomes the dominant unstable mode, leading to deformed black holes that develop local Gregory-Laflamme instabilities, thus forming a naked singularity in finite time, which is further evidence for the violation of the weak cosmic censorship conjecture in asymptotically flat higher-dimensional spacetimes.
We propose a set of boundary terms for higher spin theories in AdS$_3$ that lead to a well-defined variational principle compatible with Dirichlet boundary conditions for the metric and higher spin fields. These boundary terms are valid for higher spin theories in the Fefferman-Graham gauge and they allow us to compute the canonical free energy of higher spin black holes directly from the Euclidean, covariant, on-shell action. Using these results we reproduce the thermodynamics of the higher spin black hole of Ammon, Gutperle, Kraus, and Perlmutter and comment on the corresponding theory of induced $cal{W}$-gravity at the boundary.