No Arabic abstract
A cross between two well-known integrable multi-particle dynamics, an affine Toda molecule and a Sutherland system, is introduced for any affine root system. Though it is not completely integrable but partially integrable, or quasi exactly solvable, it inherits many remarkable properties from the parents. The equilibrium position is algebraic, i.e. proportional to the Weyl vector. The frequencies of small oscillations near equilibrium are proportional to the affine Toda masses, which are essential ingredients of the exact factorisable S-matrices of affine Toda field theories. Some lower lying frequencies are integer times a coupling constant for which the corresponding exact quantum eigenvalues and eigenfunctions are obtained. An affine Toda-Calogero system, with a corresponding rational potential, is also discussed.
An interesting observation was reported by Corrigan-Sasaki that all the frequencies of small oscillations around equilibrium are quantised for Calogero and Sutherland (C-S) systems, typical integrable multi-particle dynamics. We present an analytic proof by applying recent results of Loris-Sasaki. Explicit forms of `classical and quantum eigenfunctions are presented for C-S systems based on any root systems.
For $mathfrak g$ a Kac-Moody algebra of affine type, we show that there is an $text{Aut}, mathcal O$-equivariant identification between $text{Fun},text{Op}_{mathfrak g}(D)$, the algebra of functions on the space of ${mathfrak g}$-opers on the disc, and $Wsubset pi_0$, the intersection of kernels of screenings inside a vacuum Fock module $pi_0$. This kernel $W$ is generated by two states: a conformal vector, and a state $delta_{-1}left|0right>$. We show that the latter endows $pi_0$ with a canonical notion of translation $T^{text{(aff)}}$, and use it to define the densities in $pi_0$ of integrals of motion of classical Conformal Affine Toda field theory. The $text{Aut},mathcal O$-action defines a bundle $Pi$ over $mathbb P^1$ with fibre $pi_0$. We show that the product bundles $Pi otimes Omega^j$, where $Omega^j$ are tensor powers of the canonical bundle, come endowed with a one-parameter family of holomorphic connections, $ abla^{text{(aff)}} - alpha T^{text{(aff)}}$, $alphain mathbb C$. The integrals of motion of Conformal Affine Toda define global sections $[mathbf v_j dt^{j+1} ] in H^1(mathbb P^1, Piotimes Omega^j, abla^{text{(aff)}})$ of the de Rham cohomology of $ abla^{mathrm{(aff)}}$. Any choice of ${mathfrak g}$-Miura oper $chi$ gives a connection $ abla^{mathrm{(aff)}}_chi$ on $Omega^j$. Using coinvariants, we define a map $mathsf F_chi$ from sections of $Pi otimes Omega^j$ to sections of $Omega^j$. We show that $mathsf F_chi abla^{text{(aff)}} = abla^{text{(aff)}}_chi mathsf F_chi$, so that $mathsf F_chi$ descends to a well-defined map of cohomologies. Under this map, the classes $[mathbf v_j dt^{j+1} ]$ are sent to the classes in $H^1(mathbb P^1, Omega^j, abla^{text{(aff)}}_chi)$ defined by the ${mathfrak g}$-oper underlying $chi$.
In a space-time of two dimensions the overall effect of the collision of two solitons is a time delay (or advance) of their final trajectories relative to their initial trajectories. For the solitons of affine Toda field theories, the space-time displacement of the trajectories is proportional to the logarithm of a number $X$ depending only on the species of the colliding solitons and their rapidity difference. $X$ is the factor arising in the normal ordering of the product of the two vertex operators associated with the solitons. $X$ is shown to take real values between $0$ and $1$. This means that, whenever the solitons are distinguishable, so that transmission rather than reflection is the only possible interpretation of the classical scattering process, the time delay is negative and so an indication of attractive forces between the solitons.
Exact solutions to the quantum S-matrices for solitons in simply-laced affine Toda field theories are obtained, except for certain factors of simple type which remain undetermined in some cases. These are found by postulating solutions which are consistent with the semi-classical limit, $hbarrightarrow 0$, and the known time delays for a classical two soliton interaction. This is done by a `$q$-deformation procedure, to move from the classical time delay to the exact S-matrix, by inserting a special function called the `regularised quantum dilogarithm, which only holds when $|q|=1$. It is then checked that the solutions satisfy the crossing, unitarity and bootstrap constraints of S-matrix theory. These properties essentially follow from analogous properties satisfied by the classical time delay. Furthermore, the lowest mass breather S-matrices are computed by the bootstrap, and it is shown that these agree with the particle S-matrices known already in the affine Toda field theories, in all simply-laced cases.
We construct analytic solutions of Einstein gravity coupled to a dilaton field with a potential given by a sum of two exponentials, by rewriting the equations of motion in terms of an integrable Toda chain. These solutions can be interpreted as domain walls interpolating between different asymptotics, and as such they can have interesting applications in holography. In some cases, we can construct a solution which interpolates between an AdS fixed point in the UV limit and a hyperscaling violating boundary in the IR region. We also find analytic black brane solutions at finite temperature. We discuss the properties of the solutions and the interpretation in terms of RG flow.