Do you want to publish a course? Click here

Integrable aspects of the scaling q-state Potts models I: bound states and bootstrap closure

58   0   0.0 ( 0 )
 Added by Patrick Dorey
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the q-state Potts models for q<=4, in the scaling regimes close to their critical or tricritical points. Starting from the kink S-matrix elements proposed by Chim and Zamolodchikov, the bootstrap is closed for the scaling regions of all critical points, and for the tricritical points when 4>q>=2. We also note a curious appearance of the extended last line of Freudenthals magic square in connection with the Potts models.



rate research

Read More

We continue our discussion of the q-state Potts models for q <= 4, in the scaling regimes close to their critical and tricritical points. In a previous paper, the spectrum and full S-matrix of the models on an infinite line were elucidated; here, we consider finite-size behaviour. TBA equations are proposed for all cases related to phi(21) and phi(12) perturbations of unitary minimal models. These are subjected to a variety of checks in the ultraviolet and infrared limits, and compared with results from a recently-proposed nonlinear integral equation. A nonlinear integral equation is also used to study the flows from tricritical to critical models, over the full range of q. Our results should also be of relevance to the study of the off-critical dilute A models in regimes 1 and 2.
The bootstrap determination of the geometrical correlation functions in the two-dimensional Potts model proposed in a paper [arXiv:1607.07224] was later shown in [arXiv:1809.02191] to be incorrect, the actual spectrum of the model being considerably more complex than initially conjectured. We provide in this paper a geometrical interpretation of the four-point functions built in [arXiv:1607.07224], and explain why the results obtained by these authors, albeit incorrect, appeared so close to those of their numerical simulations of the Potts model. Our strategy is based on a cluster expansion of correlation functions in RSOS minimal models, and a subsequent numerical and algebraic analysis of the corresponding $s$-channel spectrum, in full analogy with our early work on the Potts model [arXiv:1809.02191]. Remarkable properties of the lattice amplitudes are uncovered, which explain in particular the truncation of the spectrum of [arXiv:1809.02191] to the much simpler one of the RSOS models, and which will be used in a forthcoming paper to finally determine the geometric four-point functions of the Potts model itself.
167 - Meer Ashwinkumar 2020
We study four-dimensional Chern-Simons theory on $D times mathbb{C}$ (where $D$ is a disk), which is understood to describe rational solutions of the Yang-Baxter equation from the work of Costello, Witten and Yamazaki. We find that the theory is dual to a boundary theory, that is a three-dimensional analogue of the two-dimensional chiral WZW model. This boundary theory gives rise to a current algebra that turns out to be an analytically-continued toroidal Lie algebra. In addition, we show how certain bulk correlation functions of two and three Wilson lines can be captured by boundary correlation functions of local operators in the three-dimensional WZW model. In particular, we reproduce the leading and subleading nontrivial contributions to the rational R-matrix purely from the boundary theory.
We elucidate how integrable lattice models described by Costellos 4d Chern-Simons theory can be realized via a stack of D4-branes ending on an NS5-brane in type IIA string theory, with D0-branes on the D4-brane worldvolume sourcing a meromorphic RR 1-form, and fundamental strings forming the lattice. This provides us with a nonperturbative integration cycle for the 4d Chern-Simons theory, and by applying T- and S-duality, we show how the R-matrix, the Yang-Baxter equation and the Yangian can be categorified, that is, obtained via the Hilbert space of a 6d gauge theory.
In this paper, we apply the form factor bootstrap approach to branch point twist fields in the $q$-state Potts model for $qleq 3$. For $q=3$ this is an integrable interacting quantum field theory with an internal discrete $mathbb{Z}_3$ symmetry and therefore provides an ideal starting point for the investigation of the symmetry resolved entanglement entropies. However, more generally, for $qleq 3$ the standard Renyi and entanglement entropies are also accessible through the bootstrap programme. In our work we present form factor solutions both for the standard branch point twist field with $qleq 3$ and for the composite (or symmetry resolved) branch point twist field with $q=3$. In both cases, the form factor equations are solved for two particles and the solutions are carefully checked via the $Delta$-sum rule. Using our analytic predictions, we compute the leading finite-size corrections to the entanglement entropy and entanglement equipartition for a single interval in the ground state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا