No Arabic abstract
We elucidate how integrable lattice models described by Costellos 4d Chern-Simons theory can be realized via a stack of D4-branes ending on an NS5-brane in type IIA string theory, with D0-branes on the D4-brane worldvolume sourcing a meromorphic RR 1-form, and fundamental strings forming the lattice. This provides us with a nonperturbative integration cycle for the 4d Chern-Simons theory, and by applying T- and S-duality, we show how the R-matrix, the Yang-Baxter equation and the Yangian can be categorified, that is, obtained via the Hilbert space of a 6d gauge theory.
We study four-dimensional Chern-Simons theory on $D times mathbb{C}$ (where $D$ is a disk), which is understood to describe rational solutions of the Yang-Baxter equation from the work of Costello, Witten and Yamazaki. We find that the theory is dual to a boundary theory, that is a three-dimensional analogue of the two-dimensional chiral WZW model. This boundary theory gives rise to a current algebra that turns out to be an analytically-continued toroidal Lie algebra. In addition, we show how certain bulk correlation functions of two and three Wilson lines can be captured by boundary correlation functions of local operators in the three-dimensional WZW model. In particular, we reproduce the leading and subleading nontrivial contributions to the rational R-matrix purely from the boundary theory.
We explain how, starting with a stack of D4-branes ending on an NS5-brane in type IIA string theory, one can, via T-duality and the topological-holomorphic nature of the relevant worldvolume theories, relate (i) the lattice models realized by Costellos 4d Chern-Simons theory, (ii) links in 3d analytically-continued Chern-Simons theory, (iii) the quantum geometric Langlands correspondence realized by Kapustin-Witten using 4d N = 4 gauge theory and its quantum group modification, and (iv) the Gaitsgory-Lurie conjecture relating quantum groups/affine Kac-Moody algebras to Whittaker D-modules/W-algebras. This furnishes, purely physically via branes in string theory, a novel bridge between the mathematics of integrable systems, geometric topology, geometric representation theory, and quantum algebras.
This work concerns the quantum Lorentzian and Euclidean black hole non-linear sigma models. For the Euclidean black hole sigma model an equilibrium density matrix is proposed, which reproduces the modular invariant partition function from the 2001 paper of Maldacena, Ooguri and Son. For the Lorentzian black hole sigma model, using its formulation as a gauged ${rm SL}(2,mathbb{R})$ WZW model, we describe the linear and Hermitian structure of its space of states and also propose an expression for the equilibrium density matrix. Our analysis is guided by the results of the study of a certain critical, integrable spin chain. In the scaling limit, the latter exhibits the key features of the Lorentzian black hole sigma model including the same global symmetries, the same algebra of extended conformal symmetry and a continuous spectrum of conformal dimensions.
The reflection operators are the simplest examples of the non-local integrals of motion, which appear in many interesting problems in integrable CFT. For the so-called Fateev, quantum AKNS, paperclip and KdV integrable structures, they are built from the (chiral) reflection S-matrices for the Liouville and cigar CFTs. Here we give the full spectrum of the reflection operators associated with these integrable structures. We also obtained a relation between the reflection S-matrices of the cigar and Liouville CFTs. The results of this work are applicable for the description of the scaling behaviour of the Bethe states in exactly solvable lattice systems and may be of interest to the study of the Generalized Gibbs Ensemble associated with the above mentioned integrable structures.
This review is dedicated to two-dimensional sigma models with flag manifold target spaces, which are generalizations of the familiar $CP^{n-1}$ and Grassmannian models. They naturally arise in the description of continuum limits of spin chains, and their phase structure is sensitive to the values of the topological angles, which are determined by the representations of spins in the chain. Gapless phases can in certain cases be explained by the presence of discrete t Hooft anomalies in the continuum theory. We also discuss integrable flag manifold sigma models, which provide a generalization of the theory of integrable models with symmetric target spaces. These models, as well as their deformations, have an alternative equivalent formulation as bosonic Gross-Neveu models, which proves useful for demonstrating that the deformed geometries are solutions of the renormalization group (Ricci flow) equations, as well as for the analysis of anomalies and for describing potential couplings to fermions.