We propose matching pairs of half-BPS boundary conditions related by IR dualities of 3d $mathcal{N}=2$ gauge theories. From these matching pairs we construct duality interfaces. We test our proposals by anomaly matching and the computation of supersymmetric indices. Examples include basic abelian dualities, level-rank dualities, and Aharony dualities.
Topological field theory in three dimensions provides a powerful tool to construct correlation functions and to describe boundary conditions in two-dimensional conformal field theories.
Enhancement of global symmetry and supersymmetry in the infrared is one of the most intriguing phenomena in quantum field theory. We investigate such phenomena in a large class of three dimensional superconformal field theories, known as the S-fold SCFTs. Supersymmetric indices are computed for a number of theories containing small rank gauge groups. It is found that indices of several models exhibit enhancement of supersymmetry at the superconformal fixed point in the infrared. Dualities between S-fold theories that have different quiver descriptions are also analysed. We explore a new class of theories with a discrete global symmetry, whose gauge symmetry in the quiver has a different global structure from those that have been studied earlier.
The study of exactly marginal deformations of superconformal field theories is a topic that has received considerable attention due to their rich properties. We investigate the $mathcal{N}=2$ preserving exactly marginal operators of 3d $S$-fold SCFTs. Two families of such theories are considered: one is constructed by gauging the diagonal flavour symmetry of the $T(U(2))$ and $T(U(3))$ theories, and the other by gauging the diagonal flavour symmetry of the $T^{[2,1^2]}_{[2,1^2]}(SU(4))$ theory. In both families, it is possible to turn on a Chern--Simons level for each gauge group and to couple to each theory various numbers of hypermultiplets. The detailed analysis of the exactly marginal operators, along with the superconformal indices, allows us to determine whether supersymmetry gets enhanced in the infrared and to deduce the amount of supersymmetry of the corresponding SCFT.
We study breaking and restoration of supersymmetry in five-dimensional theories by determining the mass spectrum of fermions from their equations of motion. Boundary conditions can be obtained from either the action principle by extremizing an appropriate boundary action (interval approach) or by assigning parities to the fields (orbifold approach). In the former, fields extend continuously from the bulk to the boundaries, while in the latter the presence of brane mass-terms cause fields to jump when one moves across the branes. We compare the two approaches and in particular we carefully compute the non-trivial jump profiles of the wavefunctions in the orbifold picture for very general brane mass terms. We also include the effect of the Scherk-Schwarz mechanism in either approach and point out that for a suitable tuning of the boundary actions supersymmetry is present for arbitrary values of the Scherk-Schwarz parameter. As an application of the interval formalism we construct bulk and boundary actions for super Yang-Mills theory. Finally we extend our results to the warped Randall-Sundrum background.
We construct several novel examples of 3d $mathcal{N}=2$ models whose free energy scales as $N^{3/2}$ at large $N$. This is the first step towards the identification of field theories with an M-theory dual. Furthermore, we match the volumes extracted from the free energy with the ones computed from the Hilbert series. We perform a similar analysis for the 4d parents of the 3d models, matching the volume extracted from the $a$ conformal anomaly to that obtained from the Hilbert series. For some of the 4d models, we show the existence of a Sasaki-Einstein metric on the internal space of the candidate type IIB gravity dual.