Do you want to publish a course? Click here

Status of Microscopic Modeling of Black Holes by D1-D5 System

391   0   0.0 ( 0 )
 Added by Spenta Wadia
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We briefly review the microscopic modeling of black holes as bound states of branes in the context of the soluble D1-D5 system. We present a discussion of the low energy brane dynamics and account for black hole thermodynamics and Hawking radiation rates. These considerations are valid in the regime of supergravity due to the non-renormalization of the low energy dynamics in this model. Using Maldacena duality and standard statistical mechanics methods one can account for black hole thermodynamics and calculate the absorption cross section and the Hawking radiation rates. Hence, at least in the case of this model black hole, since we can account for black hole properties within a unitary theory, there is no information paradox.



rate research

Read More

We consider states of the D1-D5 CFT where only the left-moving sector is excited. As we deform away from the orbifold point, some of these states will remain BPS while others can `lift. We compute this lifting for a particular family of D1-D5-P states, at second order in the deformation off the orbifold point. We note that the maximally twisted sector of the CFT is special: the covering surface appearing in the correlator can only be genus one while for other sectors there is always a genus zero contribution. We use the results to argue that fuzzball configurations should be studied for the full class including both extremal and near-extremal states; many extremal configurations may be best seen as special limits of near extremal configurations.
In arbitrary dimension, we consider a theory described by the most general quadratic curvature corrections of Einstein gravity together with a self-interacting nonminimally coupled scalar field. This theory is shown to admit five different families of Lifshitz black holes dressed with a nontrivial scalar field. The entropy of these configurations is microscopically computed by means of a higher-dimensional anisotropic Cardy-like formula where the role of the ground state is played by the soliton obtained through a double analytic continuation. This involves to calculate the correct expressions for the masses of the higher-dimensional Lifshitz black hole as well as their corresponding soliton. The robustness of this Cardy-like formula is checked by showing that the microscopic entropy is in perfect agreement with the gravitational Wald entropy. Consequently, the calculated global charges are compatible with the first law of thermodynamics. We also verify that all the configurations satisfy an anisotropic higher-dimensional version of the Smarr formula.
We examine the large $N$ 1/4-BPS spectrum of the symmetric orbifold CFT Sym$^N(M)$ deformed to the supergravity point in moduli space for $M= K3$ and $T^4$. We consider refinement under both left- and right-moving $SU(2)_R$ symmetries of the superconformal algebra, and decompose the spectrum into characters of the algebra. We find that at large $N$ the character decomposition satisfies an unusual property, in which the degeneracy only depends on a certain linear combination of left- and right-moving quantum numbers, suggesting deeper symmetry structure. Furthermore, we consider the action of discrete symmetry groups on these degeneracies, where certain subgroups of the Conway group are known to play a role. We also comment on the potential for larger discrete symmetry groups to appear in the large $N$ limit.
93 - Spenta R. Wadia 2000
In these notes we review the theory of the microscopic modeling of the 5-dim. black hole of type IIB string theory in terms of the $D1-D5$ brane system. The emphasis here is more on the brane dynamics rather than on supergravity solutions. We present a discussion of the low energy brane dynamics and account for black hole thermodynamics and Hawking radiation rates. These considerations are valid in the regime of supergravity due to the non-renormalization of the low energy dynamics in this model.
We construct a black hole geometry generated by the intersection of $N_c$ color D3- branes and $N_f$ flavor D5-branes along a 2+1 dimensional subspace. Working in the Veneziano limit in which $N_f$ is large and distributing homogeneously the D5-branes in the internal space, we calculate the solution of the equations of motion of supergravity plus sources which includes the backreaction of the flavor branes. The solution is analytic and dual to a 2+1 dimensional defect in a 3+1 dimensional gauge theory, with $N_f$ massless hypermultiplets living in the defect. The smeared background we obtain can be regarded as the holographic realization of a multilayered system. We study the thermodynamics of the resulting spatially anisotropic geometry and compute the first and second order transport coefficients for perturbations propagating along the defect. We find that, in our system, the dynamics of excitations within a layer can be described by a stack of effective D2-branes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا