No Arabic abstract
We consider states of the D1-D5 CFT where only the left-moving sector is excited. As we deform away from the orbifold point, some of these states will remain BPS while others can `lift. We compute this lifting for a particular family of D1-D5-P states, at second order in the deformation off the orbifold point. We note that the maximally twisted sector of the CFT is special: the covering surface appearing in the correlator can only be genus one while for other sectors there is always a genus zero contribution. We use the results to argue that fuzzball configurations should be studied for the full class including both extremal and near-extremal states; many extremal configurations may be best seen as special limits of near extremal configurations.
We examine the large $N$ 1/4-BPS spectrum of the symmetric orbifold CFT Sym$^N(M)$ deformed to the supergravity point in moduli space for $M= K3$ and $T^4$. We consider refinement under both left- and right-moving $SU(2)_R$ symmetries of the superconformal algebra, and decompose the spectrum into characters of the algebra. We find that at large $N$ the character decomposition satisfies an unusual property, in which the degeneracy only depends on a certain linear combination of left- and right-moving quantum numbers, suggesting deeper symmetry structure. Furthermore, we consider the action of discrete symmetry groups on these degeneracies, where certain subgroups of the Conway group are known to play a role. We also comment on the potential for larger discrete symmetry groups to appear in the large $N$ limit.
In the context of the fuzzball programme, we investigate deforming the microscopic string description of the D1-D5 system on T^4xS^1 away from the orbifold point. Using conformal perturbation theory and a generalization of Lunin-Mathur symmetric orbifold technology for computing twist-nontwist correlators developed in a companion work, we initiate a program to compute the anomalous dimensions of low-lying string states in the D1-D5 superconformal field theory. Our method entails finding four-point functions involving a string operator O of interest and the deformation operator, taking coincidence limits to identify which other operators mix with O, subtracting the identified conformal family to isolate other contributions to the four-point function, finding the mixing coefficients, and iterating. For the lowest-lying string modes, this procedure should truncate in a finite number of steps. We check our method by showing how the operator dual to the dilaton does not participate in mixing that would change its conformal dimension, as expected. Next we complete the first stage of the iteration procedure for a low-lying string state of the form partial X partial X barpartial X barpartial X and find its mixing coefficient. Our main qualitative result is evidence of operator mixing at first order in the deformation parameter, which means that the string state acquires an anomalous dimension. After diagonalization this will mean that anomalous dimensions of some string states in the D1-D5 SCFT must decrease away from the orbifold point while others increase.
We briefly review the microscopic modeling of black holes as bound states of branes in the context of the soluble D1-D5 system. We present a discussion of the low energy brane dynamics and account for black hole thermodynamics and Hawking radiation rates. These considerations are valid in the regime of supergravity due to the non-renormalization of the low energy dynamics in this model. Using Maldacena duality and standard statistical mechanics methods one can account for black hole thermodynamics and calculate the absorption cross section and the Hawking radiation rates. Hence, at least in the case of this model black hole, since we can account for black hole properties within a unitary theory, there is no information paradox.
We compute the strong coupling limit of the boundary reflection factor for excitations on open strings attached to various kinds of D5-branes that probe AdS5 x S5. We study the crossing equation, which constrains the boundary reflection factor, and propose that some solutions will give the boundary reflection factors for all values of the coupling. Our proposal passes various checks in the strong coupling limit by comparison with diverse explicit string theory computations. In some of the cases we consider, the D5-branes correspond to 1/2 BPS Wilson loops in the k-th rank antisymmetric representation of the dual field theory. In the other cases they correspond in the dual field theory to the addition of a fundamental hypermultiplet in a defect.
The elliptic genus of K3 is an index for the 1/4-BPS states of its sigma model. At the torus orbifold point there is an accidental degeneracy of such states. We blow up the orbifold fixed points using conformal perturbation theory, and find that this fully lifts the accidental degeneracy of the 1/4-BPS states with h=1. At a generic point near the Kummer surface the elliptic genus thus measures not just their index, but counts the actual number of these BPS states. We comment on the implication of this for symmetry surfing and Mathieu moonshine.