No Arabic abstract
We study neutrino oscillations in space within a realistic model in which both the source and the target are considered to be stationary having Gaussian-form localizations. The model admits an exact analytic solution in field theory which may be expressed in terms of complementary error functions, thereby allowing for a quantitative discussion of quantum-mechanical (coherent) versus statistical (incoherent) uncertainties. The solvable model provides an insightful framework in addressing questions related to propagation and oscillation of neutrinos that may not be attainable by the existing approaches. We find a novel form of plane-wave behaviour of neutrino oscillations if the localization spread of the source and target states due to quantum mechanics is of macroscopic size but much smaller than neutrinos oscillation length. Finally, we discuss the limits on the coherence length of neutrino oscillations and find that they mainly arise from uncertainties of statistical origin.
The GiBUU model, which implements all reaction channels relevant at medium neutrino energy, is used to investigate the neutrino and antineutrino scattering on iron. Results for integrated cross sections are compared with NOMAD and MINOS data. It is shown, that final state interaction can noticeably change the spectra of the outgoing hadrons. Predictions for the Miner$ u$a experiment are made for pion spectra, averaged over NuMI neutrino and antineutrino fluxes.
We examine scenarios in which a dark sector (dark matter, dark radiation, or dark energy) couples to the active neutrinos. For light and weakly-coupled exotic sectors we find that scalar, vector, or tensor dark backgrounds may appreciably impact neutrino propagation while remaining practically invisible to all other phenomenological probes. The dark medium may induce small departures from the Standard Model predictions or even offer an alternative explanation of neutrino oscillations. While the propagation of neutrinos is affected in all experiments, atmospheric data currently represent the most promising probe of the new physics scale. We quantify the future sensitivity of the ORCA detector of KM3NeT and the IceCube experiment and find that all exotic effects can be constrained at the level of a few percent of the Earth matter potential, with couplings mediating $mu$-neutrino transitions being most constrained. Long baseline experiments like DUNE may provide additional complementary information on the scale of the dark sector.
We study the neutrino oscillation problem in the framework of the wave packet formalism. The neutrino state is described by a packet located initially in a region S (source) and detected in another region D at a distance R from S. We examine how the oscillation probability as a function of variable R can be derived from he oscillation probability as a function of time t, the latter being found by using the Schrodinger equation. We justify the known prescription t --> R/c without referring to a specific form of the neutrino wave packet and only assuming the finiteness of its support. The effect of the oscillation damping at large R is revealed. For an illustration, an explicit expression for the damping factor is obtained using Gaussian packet.
The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.
In this work we analyze quantum decoherence in neutrino oscillations considering the Open Quantum System framework and oscillations through matter for three neutrino families. Taking DUNE as a case study we performed sensitivity analyses for two neutrino flux configurations finding limits for the decoherence parameters. We also offer a physical interpretation for a new peak which arises at the $ u_{e}$ appearance probability with decoherence. The best sensitivity regions found for the decoherence parameters are $Gamma_{21}le 1.2times10^{-23},text{GeV}$ and $Gamma_{32}le 7.7times10^{-25},text{GeV}$ at $90%$ C. L.