Do you want to publish a course? Click here

Neutrino Oscillations in Dark Backgrounds

105   0   0.0 ( 0 )
 Added by Ian Shoemaker
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We examine scenarios in which a dark sector (dark matter, dark radiation, or dark energy) couples to the active neutrinos. For light and weakly-coupled exotic sectors we find that scalar, vector, or tensor dark backgrounds may appreciably impact neutrino propagation while remaining practically invisible to all other phenomenological probes. The dark medium may induce small departures from the Standard Model predictions or even offer an alternative explanation of neutrino oscillations. While the propagation of neutrinos is affected in all experiments, atmospheric data currently represent the most promising probe of the new physics scale. We quantify the future sensitivity of the ORCA detector of KM3NeT and the IceCube experiment and find that all exotic effects can be constrained at the level of a few percent of the Earth matter potential, with couplings mediating $mu$-neutrino transitions being most constrained. Long baseline experiments like DUNE may provide additional complementary information on the scale of the dark sector.

rate research

Read More

We study neutrino oscillations in a medium of dark matter which generalizes the standard matter effect. A general formula is derived to describe the effect of various mediums and their mediators to neutrinos. Neutrinos and anti-neutrinos receive opposite contributions from asymmetric distribution of (dark) matter and anti-matter, and thus it could appear in precision measurement of neutrino or anti-neutrino oscillations. Furthermore, the standard neutrino oscillation can occur from the symmetric dark matter effect even for massless neutrinos.
High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the $Z( ubar u)+$jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by $Z(ell^+ell^-)+$jet, $W(ell u)+$jet and $gamma+$jet production, and extrapolating to the $Z( ubar u)+$jet background by means of precise theoretical predictions. In this context, recent advances in perturbative calculations open the door to significant sensitivity improvements in dark matter searches. In this spirit, we present a combination of state-of-the art calculations for all relevant $V+$jets processes, including throughout NNLO QCD corrections and NLO electroweak corrections supplemented by Sudakov logarithms at two loops. Predictions at parton level are provided together with detailed recommendations for their usage in experimental analyses based on the reweighting of Monte Carlo samples. Particular attention is devoted to the estimate of theoretical uncertainties in the framework of dark matter searches, where subtle aspects such as correlations across different $V+$jet processes play a key role. The anticipated theoretical uncertainty in the $Z( ubar u)+$jet background is at the few percent level up to the TeV range.
The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.
84 - M. Yoshimura , N. Sasao , 2015
A scheme of quantum electrodynamic (QED) background-free radiative emission of neutrino pair (RENP) is proposed in order to achieve precision determination of neutrino properties so far not accessible. The important point for the background rejection is the fact that the dispersion relation between wave vector along propagating direction in wave guide (and in a photonic-crystal type fiber) and frequency is modified by a discretized non-vanishing effective mass. This effective mass acts as a cutoff of allowed frequencies, and one may select the RENP photon energy region free of all macro-coherently amplified QED processes by choosing the cutoff larger than the mass of neutrinos.
In this work we analyze quantum decoherence in neutrino oscillations considering the Open Quantum System framework and oscillations through matter for three neutrino families. Taking DUNE as a case study we performed sensitivity analyses for two neutrino flux configurations finding limits for the decoherence parameters. We also offer a physical interpretation for a new peak which arises at the $ u_{e}$ appearance probability with decoherence. The best sensitivity regions found for the decoherence parameters are $Gamma_{21}le 1.2times10^{-23},text{GeV}$ and $Gamma_{32}le 7.7times10^{-25},text{GeV}$ at $90%$ C. L.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا