No Arabic abstract
We study elastic pion-pion scattering in global linear moose models and apply the results to a variety of Higgsless models in flat and AdS space using the Equivalence Theorem. In order to connect the global moose to Higgsless models, we first introduce a block-spin transformation which corresponds, in the continuum, to the freedom to perform coordinate transformations in the Higgsless model. We show that it is possible to make an f-flat deconstruction in which all of the f-constants f_j of the linear moose model are identical; the phenomenologically relevant f-flat models are those in which the coupling constants of the groups at either end of the moose are small - corresponding to the global linear moose. In studying pion-pion scattering, we derive various sum rules, including one analogous to the KSRF relation, and use them in evaluating the low-energy and high-energy forms of the leading elastic partial wave scattering amplitudes. We obtain elastic unitarity bounds as a function of the mass of the lightest KK mode and discuss their physical significance.
This talk reviews recent progress in Higgsless models of electroweak symmetry breaking, and summarizes relevant points of model-building and phenomenology.
Present status of the study of the low energy $pipi$ interaction is reviewed, including the recent results on reactions $pi N topipi N$ near threshold. Current experimental values of s-wave $pipi$ scattering lengths are compared with predictions of various theoretical models. Required experimental and theoretical improvements are discussed, in particular the need for a new $K_{e4}$ decay measurement, and a more reliable theoretical interpretation of the near-threshold $pi N topipi N$ data.
In this article we study resonances and surface waves in $pi^+$--p scattering. We focus on the sequence whose spin-parity values are given by $J^p = {3/2}^+,{7/2}^+, {11/2}^+, {15/2}^+,{19/2}^+$. A widely-held belief takes for granted that this sequence can be connected by a moving pole in the complex angular momentum (CAM) plane, which gives rise to a linear trajectory of the form $J = alpha_0+alpha m^2$, $alphasim 1/(mathrm{GeV})^2$, which is the standard expression of the Regge pole trajectory. But the phenomenology shows that only the first few resonances lie on a trajectory of this type. For higher $J^p$ this rule is violated and is substituted by the relation $Jsim kR$, where $k$ is the pion--nucleon c.m.s.-momentum, and $Rsim 1$ fm. In this article we prove: (a) Starting from a non-relativistic model of the proton, regarded as composed by three quarks confined by harmonic potentials, we prove that the first three members of this $pi^+$-p resonance sequence can be associated with a vibrational spectrum of the proton generated by an algebra $Sp(3,R)$. Accordingly, these first three members of the sequence can be described by Regge poles and lie on a standard linear trajectory. (b) At higher energies the amplitudes are dominated by diffractive scattering, and the creeping waves play a dominant role. They can be described by a second class of poles, which can be called Sommerfelds poles, and lie on a line nearly parallel to the imaginary axis of the CAM-plane. (c) The Sommerfeld pole which is closest to the real axis of the CAM-plane is dominant at large angles, and describes in a proper way the backward diffractive peak in both the following cases: at fixed $k$, as a function of the scattering angle, and at fixed scattering angle $theta=pi$, as a function of $k$. (d) The evolution of this pole, as a function of $k$, is given in first approximation by $Jsimeq kR$.
Focusing on three-pion states with maximal isospin ($pi^+pi^+pi^+$), we present the first non-perturbative determination of an energy-dependent three-hadron scattering amplitude from first-principles QCD. The calculation combines finite-volume three-hadron energies, extracted using numerical lattice QCD, with a relativistic finite-volume formalism, required to interpret the results. To fully implement the latter, we also solve integral equations that relate an intermediate three-body K matrix to the physical three-hadron scattering amplitude. The resulting amplitude shows rich analytic structure and a complicated dependence on the two-pion invariant masses, represented here via Dalitz-like plots of the scattering rate.
The three-site model has been offered as a benchmark for studying the collider phenomenology of Higgsless models. In this paper we analyze how well the three-site model performs as a general exemplar of Higgsless models in describing W_L W_L scattering, and which modifications can make it more representative. We employ general sum rules relating the masses and couplings of the Kaluza-Klein (KK) modes of the gauge fields in continuum and deconstructed Higgsless models as a way to compare the different theories. We show that the size of the four-point vertex for the (unphysical) Nambu-Goldstone modes and the degree to which the sum rules are saturated by contributions from the lowest-lying KK resonances both provide good measures of the extent to which a highly-deconstructed theory can accurately describe the low-energy physics of a continuum 5d Higgsless model. After comparing the three-site model to flat and warped continuum models, we analyze extensions of the three-site model to a longer open linear moose with an additional U(1) group and to a ring (BESS or hidden local symmetry) model with three sites and three links. Both cases may be readily analyzed in the framework of the general sum rules. We demonstrate that W_L W_L scattering in the ring model can very closely approximate scattering in the continuum models, provided that the hidden local symmetry parameter `a is chosen to mimic rho-meson dominance of pion-pion scattering in QCD. The hadron and lepton collider phenomenology of both extended models is briefly discussed, with a focus on the complementary information to be gained from precision measurements of the Z line shape and ZWW coupling at a high-energy lepton collider.