No Arabic abstract
We study the production and decays of top squarks (stops) at the Tevatron collider in models of low-energy supersymmetry breaking. We consider the case where the lightest Standard Model (SM) superpartner is a light neutralino that predominantly decays into a photon and a light gravitino. Considering the lighter stop to be the next-to-lightest Standard Model superpartner, we analyze stop signatures associated with jets, photons and missing energy, which lead to signals naturally larger than the associated SM backgrounds. We consider both 2-body and 3-body decays of the top squarks and show that the reach of the Tevatron can be significantly larger than that expected within either the standard supergravity models or models of low-energy supersymmetry breaking in which the stop is the lightest SM superpartner. For a modest projection of the final Tevatron luminosity, L = 4 fb-1, stop masses of order 300 GeV are accessible at the Tevatron collider in both 2-body and 3-body decay modes. We also consider the production and decay of ten degenerate squarks that are the supersymmetric partners of the five light quarks. In this case we find that common squark masses up to 360 GeV are easily accessible at the Tevatron collider, and that the reach increases further if the gluino is light.
The scalar partner of the top quark is relatively light in many models of supersymmetry breaking. We study the production of top squarks (stops) at the Tevatron collider and their subsequent decay through baryon-number violating couplings such that the final state contains no leptons. Performing a detector-level analysis, we demonstrate that, even in the absence of leptons or missing energy, stop masses upto 210 gev/c^2 can be accessible at the Tevatron.
A recent cosmological bound on the gravitino mass, $m_{3/2}<4.7$ eV, together with LHC results on the Higgs mass and direct searches, excludes minimal gauge mediation with high reheating temperatures. We discuss a minimal, vector-mediated model which incorporates the seesaw mechanism for neutrino masses, allows for thermal leptogenesis, ameliorates the $mu$ problem, and achieves the observed Higgs mass and a gravitino as light as $1$-$2$ eV.
In models of low-energy gauge mediation, the observed Higgs mass is in tension with the cosmological limit on the gravitino mass $m_{3/2} lesssim 16$ eV. We present an alternative mediation mechanism of supersymmetry breaking via a $U(1)$ $D$-term with an $E_6$-inspired particle content, which we call vector mediation. The gravitino mass can be in the eV range. The sfermion masses are at the 10 TeV scale, while gauginos around a TeV. This mechanism also greatly ameliorates the $mu$-problem.
These lectures contain an introduction to the search for supersymmetry at hadron colliders. The Tevatron is one of high-energy physics most sophisticated tools. The high center-of-mass energy of its proton-antiproton collisions makes it an ideal place to search for physics beyond the Standard Model, such as supersymmetry. Two experiments, CDF and DO, completed a long data taking period in summer of 1995, yielding over $100 p b^{-1}$ of proton-- antiproton interactions. The data recorded by the experiments are still being analysed. The lectures outline the strategies in the search for supersymmetry at the Tevatron and examine the major analyses in detail. Results obtained by the two experiments are included where available.
We review a class of models of dynamical supersymmetry breaking, and give a unified description of these models.