Do you want to publish a course? Click here

Models of Dynamical Supersymmetry Breaking

56   0   0.0 ( 0 )
 Added by Lisa Randall
 Publication date 1997
  fields
and research's language is English
 Authors Lisa Randall




Ask ChatGPT about the research

We review a class of models of dynamical supersymmetry breaking, and give a unified description of these models.

rate research

Read More

In this paper we study dynamical supersymmetry breaking in absence of gravity with the matter content of the minimal supersymmetric standard model. The hidden sector of the theory is a strongly coupled gauge theory, realized in terms of microscopic variables which condensate to form mesons. The supersymmetry breaking scalar potential combines F, D terms with instanton generated interactions in the Higgs-mesons sector. We show that for a large region in parameter space the vacuum breaks in addition to supersymmetry also electroweak gauge symmetry. We furthermore present local D-brane configurations that realize these supersymmetry breaking patterns.
We explore calculable models with low-energy supersymmetry where the flavor hierarchy is generated by quark and lepton compositeness, and where the composites emerge from the same sector that dynamically breaks supersymmetry. The observed pattern of Standard Model fermion masses and mixings is obtained by identifying the various generations with composites of different dimension in the ultraviolet. These single-sector supersymmetry breaking models give rise to various spectra of soft masses which are, in many cases, quite distinct from what is commonly found in models of gauge or gravity mediation. In typical models which satisfy all flavor-changing neutral current constraints, both the first and second generation sparticles have masses of order 20 TeV, while the stop mass is near 1 TeV. In other cases, all sparticles obtain masses of order 1 TeV predominantly from gauge mediation, even though the first two generations are composite.
100 - Nobuhito Maru 2016
A recently proposed new mechanism of D-term triggered dynamical supersymmetry breaking is reviewed. Supersymmetry is dynamically broken by nonvanishing D-term vacuum expectation value, which is realized as a nontrivial solution of the gap equation in the self-consistent approximation as in the case of Nambu-Jona-Lasinio model and BCS superconductivity.
We elaborate on integrable dynamical systems from scalar-gravity Lagrangians that include the leading dilaton tadpole potentials of broken supersymmetry. In the static Dudas-Mourad compactifications from ten to nine dimensions, which rest on these leading potentials, the string coupling and the space-time curvature become unbounded in some regions of the internal space. On the other hand, the string coupling remains bounded in several corresponding solutions of these integrable models. One can thus identify corrected potential shapes that could grant these features generically when supersymmetry is absent or non-linearly realized. On the other hand, large scalar curvatures remain present in all our examples. However, as in other contexts, the combined effects of the higher-derivative corrections of String Theory could tame them.
We study the non-perturbative dynamics of an unoriented Z_5-quiver theory of GUT kind with gauge group U(5) and chiral matter. At strong coupling the non-perturbative dynamics is described in terms of set of baryon/meson variables satisfying a quantum deformed constraint. We compute the effective superpotential of the theory and show that it admits a line of supersymmetric vacua and a phase where supersymmetry is dynamically broken via gaugino condensation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا