Do you want to publish a course? Click here

Exclusive B-meson Rare Decays and General Relations of Form Factors in Effective Field Theory of Heavy Quarks

221   0   0.0 ( 0 )
 Added by Wu Yue-liang
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

B meson rare decays ($Bto K(K^{*})lbar l$ and $Bto K^*gamma$) are analyzed in the framework of effective field theory of heavy quarks. The semileptonic and penguin type form factors for these decays are calculated by using the light cone sum rules method at the leading order of $1/m_Q$ expansion. Four exact relations between the two types of form factors are obtained at the leading order of $1/m_Q$ expansion. Of particular, the relations are found to hold for whole momentum transfer region. We also investigate the validity of the relations resulted from the large energy effective theory based on the general relations obtained in the present approach. The branching ratios of the rare decays are presented and their potential importance for extracting the CKM matrix elements and probing new physics is emphasized.



rate research

Read More

264 - W.Y. Wang , Y.L. Wu , M. Zhong 2002
We present a general study on exclusive semileptonic decays of heavy (B, D, B_s) to light (pi, rho, K, K^*) mesons in the framework of effective field theory of heavy quark. Transition matrix elements of these decays can be systematically characterized by a set of wave functions which are independent of the heavy quark mass except for the implicit scale dependence. Form factors for all these decays are calculated consistently within the effective theory framework using the light cone sum rule method at the leading order of 1/m_Q expansion. The branching ratios of these decays are evaluated, and the heavy and light flavor symmetry breaking effects are investigated. We also give comparison of our results and the predictions from other approaches, among which are the relations proposed recently in the framework of large energy effective theory.
56 - D. Cote , S. Brunet , P. Taras 2004
A form factor reweighting technique has been elaborated to permit relatively easy comparisons between different form factor models applied to exclusive B --> X l nu decays. The software tool developped for this purpose is described. It can be used with any event generator, three of which were used in this work: ISGW2, PHSP and FLATQ2, a new powerful generator. The software tool allows an easy and reliable implementation of any form factor model. The tool has been fully validated with the ISGW2 form factor hypothesis. The results of our present studies indicate that the combined use of the FLATQ2 generator and the form factor reweighting tool should play a very important role in future exclusive |Vub| measurements, with largely reduced errors.
We study the exclusive semileptonic $B$-meson decays $Bto K(pi)ell^+ell^-$, $Bto K(pi) ubar u$, and $Btopitau u$, computing observables in the Standard model using the recent lattice-QCD results for the underlying form factors from the Fermilab Lattice and MILC Collaborations. These processes provide theoretically clean windows into physics beyond the Standard Model because the hadronic uncertainties are now under good control for suitably binned observables. For example, the resulting partially integrated branching fractions for $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ outside the charmonium resonance region are 1-2$sigma$ higher than the LHCb Collaborations recent measurements, where the theoretical and experimental errors are commensurate. The combined tension is 1.7$sigma$. Combining the Standard-Model rates with LHCbs measurements yields values for the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements $|V_{td}|=7.45{(69)}times10^{-3}$, $|V_{ts}|=35.7(1.5)times10^{-3}$, and $|V_{td}/V_{ts}|=0.201{(20)}$, which are compatible with the values obtained from neutral $B_{(s)}$-meson oscillations and have competitive uncertainties. Alternatively, taking the CKM matrix elements from unitarity, we constrain new-physics contributions at the electroweak scale. The constraints on the Wilson coefficients ${rm Re}(C_9)$ and ${rm Re}(C_{10})$ from $Btopimu^+mu^-$ and $Bto Kmu^+mu^-$ are competitive with those from $Bto K^* mu^+mu^-$, and display a 2.0$sigma$ tension with the Standard Model. Our predictions for $Bto K(pi) ubar u$ and $Btopitau u$ are close to the current experimental limits.
115 - Ben D. Pecjak 2008
I briefly review the theory status of exclusive rare radiative decays.
We investigate the combined use of moving NRQCD and stochastic sources in lattice calculations of form factors describing rare B and B_s decays. Moving NRQCD leads to a reduction of discretisation errors compared to standard NRQCD. Stochastic sources are tested for reduction of statistical errors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا