Do you want to publish a course? Click here

Heavy to Light Meson Exclusive Semileptonic Decays in Effective Field Theory of Heavy Quark

265   0   0.0 ( 0 )
 Added by Wenyu Wang
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

We present a general study on exclusive semileptonic decays of heavy (B, D, B_s) to light (pi, rho, K, K^*) mesons in the framework of effective field theory of heavy quark. Transition matrix elements of these decays can be systematically characterized by a set of wave functions which are independent of the heavy quark mass except for the implicit scale dependence. Form factors for all these decays are calculated consistently within the effective theory framework using the light cone sum rule method at the leading order of 1/m_Q expansion. The branching ratios of these decays are evaluated, and the heavy and light flavor symmetry breaking effects are investigated. We also give comparison of our results and the predictions from other approaches, among which are the relations proposed recently in the framework of large energy effective theory.



rate research

Read More

86 - G. Burdman 1992
The scaling behavior of semileptonic form-factors in Heavy to Light transitions is studied in the Heavy Quark Effective Theory. In the case of $Hrightarrow pi e u$ it is shown that the same scaling violations affecting the heavy meson decay constant will be present in the semileptonic form-factors.
We report on exploratory studies of heavy-light meson semileptonic decays using Asqtad light quarks, NRQCD heavy quarks and Symanzik improved glue on coarse quenched lattices. Oscillatory contributions to three-point correlators coming from the staggered light quarks are found to be handled well by Bayesian fitting methods. B meson decays to both the Goldstone pion and to one of the point-split non-Goldstone pions are investigated. One-loop perturbative matching of NRQCD/Asqtad heavy-light currents is incorporated.
220 - M. Zhong , Y.L. Wu , W.Y. Wang 2002
B meson rare decays ($Bto K(K^{*})lbar l$ and $Bto K^*gamma$) are analyzed in the framework of effective field theory of heavy quarks. The semileptonic and penguin type form factors for these decays are calculated by using the light cone sum rules method at the leading order of $1/m_Q$ expansion. Four exact relations between the two types of form factors are obtained at the leading order of $1/m_Q$ expansion. Of particular, the relations are found to hold for whole momentum transfer region. We also investigate the validity of the relations resulted from the large energy effective theory based on the general relations obtained in the present approach. The branching ratios of the rare decays are presented and their potential importance for extracting the CKM matrix elements and probing new physics is emphasized.
A symmetry-preserving regularisation of a vector$times$vector contact interaction (SCI) is used to deliver a unified treatment of semileptonic transitions involving $pi$, $K$, $D_{(s)}$, $B_{(s,c)}$ initial states. The framework is characterised by algebraic simplicity, few parameters, and the ability to simultaneously treat systems from Nambu-Goldstone modes to heavy+heavy mesons. Although the SCI form factors are typically somewhat stiff, the results are comparable with experiment and rigorous theory results. Hence, predictions for the five unmeasured $B_{s,c}$ branching fractions should be a reasonable guide. The analysis provides insights into the effects of Higgs boson couplings via current-quark masses on the transition form factors; and results on $B_{(s)}to D_{(s)}$ transitions yield a prediction for the Isgur-Wise function in fair agreement with contemporary data.
107 - C. Aubin , C. Bernard 2007
We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (schpt), working to leading order in $1/m_Q$, where $m_Q$ is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick within schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors $Btopi$ and $Dto K$ when the light quarks are simulated with the staggered action.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا