Do you want to publish a course? Click here

Form factors for rare B decays: strategy, methodology, and numerical study

181   0   0.0 ( 0 )
 Added by Zhaofeng Liu
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the combined use of moving NRQCD and stochastic sources in lattice calculations of form factors describing rare B and B_s decays. Moving NRQCD leads to a reduction of discretisation errors compared to standard NRQCD. Stochastic sources are tested for reduction of statistical errors.



rate research

Read More

276 - Ran Zhou 2012
We report on form factors for the B->K l^+ l^- semi-leptonic decay process. We use several lattice spacings from a=0.12 fm down to 0.06 fm and a variety of dynamical quark masses with 2+1 flavors of asqtad quarks provided by the MILC Collaboration. These ensembles allow good control of the chiral and continuum extrapolations. The b-quark is treated as a clover quark with the Fermilab interpretation. We update our results for f_parallel and f_perp, or, equivalently, f_+ and f_0. In addition, we present new results for the tensor form factor f_T. Model independent results are obtained based upon the z-expansion.
Semi-leptonic $B$ decays provide promising channels to test the Standard Model, search for signs of new physics, or determine fundamental parameters like CKM matrix elements. We present an update on our calculation of short distance contributions to GIM suppressed rare $B$ decays focusing in particular on $B_sto phi ell^+ ell^-$ decays. Furthermore we show first results for our calculation of $B_{(s)}to D_{(s)}^{(*)}ell u$ semi-leptonic decays involving $bto c$ transitions. Our calculations are based on RBC-UKQCDs 2+1 flavor domain-wall fermion and Iwasaki gauge field configurations featuring three lattice spacings in the range $1.73$ GeV $le a^{-1} le 2.77$ GeV and pion masses down to the physical value. We calculate the form factors by simulating $b$-quarks using the relativistic heavy quark action, create light $u/d$ and $s$ quarks with standard domain-wall kernel, and use optimised Mobius domain-wall fermions for charm quarks.
We discuss preliminaries of a calculation of the form factors for the semileptonic decays B -> pi lv, B_s -> K lv, and B -> K ll. We simulate with NRQCD heavy and HISQ light valence quarks on the MILC 2+1 dynamical asqtad configurations. The form factors are calculated over a range of momentum transfer to allow determination of their shape and the extraction of |V_ub|. Additionally, we are calculating ratios of these form factors to those for the unphysical decay B_s -> eta_s. We are studying the possibility of combining these precisely determined ratios with future calculations of B_s ->eta_s using HISQ b-quarks to generate form factors with significantly reduced errors.
We calculate, for the first time using unquenched lattice QCD, form factors for the rare decay B -> Kll in and beyond the Standard Model. Our lattice QCD calculation utilizes a nonrelativistic QCD formulation for the b valence quarks, the highly improved staggered quark formulation for the light valence quarks, and employs the MILC 2+1 asqtad ensembles. The form factor results, based on the z expansion, are valid over the full kinematic range of q^2. We construct the ratios f0/f+ and fT/f+, which are useful in constraining new physics and verifying effective theory form factor symmetry relations. We also discuss the calculation of Standard Model observables.
Form factors of the rare $Lambda_{b}(Lambda_{b}^*)to Nell^{+}ell^{-}$ decays are calculated in the framework of the light cone QCD sum rules by taking into account of the contributions from the negative parity baryons. Using the obtained results on the form factors, the branching ratios of the considered decays are estimated. The numerical survey for the branching ratios of the $Lambda_b rar Nell^+ell^- $ and $Lambda_b^ast rar Nell^+ell^- $ decays indicate that these transitions could be measurable in LHCb in near future. Comparison of our predictions on the form factors and branching ratios with those existing in the literature is also performed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا