Do you want to publish a course? Click here

Physics with Low-Energy Muons at a Neutrino Factory Complex

326   0   0.0 ( 0 )
 Added by Gian Giudice
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

The physics potential of an intense source of low-energy muons is studied. Such a source is a necessary stage towards building the neutrino factories and muon colliders which are being considered at present. The CERN Neutrino Factory could deliver muon beams with intensities 3-4 orders of magnitude higher than available now, with large freedom in the choice of the time structure. Low-energy muon physics contributes to many fields of basic research, including rare muon decays, i.e., decays that do not conserve muon number, measurements of fundamental constants, the muon anomalous magnetic moment, determination of the Lorentz structure of the weak interaction, QED tests, CPT tests, proton and nuclear charge distributions (even for short-lived isotopes), and condensed matter physics. In studying the experimental programme, we analyse the present limitations, list the requirements on the new muon beams, and describe some ideas on how to implement these beam lines in a CERN neutrino factory complex.



rate research

Read More

In response to the growing interest in building a Neutrino Factory to produce high intensity beams of electron- and muon-neutrinos and antineutrinos, in October 1999 the Fermilab Directorate initiated two six-month studies. The first study, organized by N. Holtkamp and D. Finley, was to investigate the technical feasibility of an intense neutrino source based on a muon storage ring. This design study has produced a report in which the basic conclusion is that a Neutrino Factory is technically feasible, although it requires an aggressive R&D program. The second study, which is the subject of this report, was to explore the physics potential of a Neutrino Factory as a function of the muon beam energy and intensity, and for oscillation physics, the potential as a function of baseline.
We explore the effects of nonstandard neutrino interactions in the lower components of the solar neutrino spectrum which are predominant by the vacuum oscillations. The recent measurements of Borexino experiment between 2011 and 2015 provide a clean test to study the nonstandard neutrino interactions at the source (sun) and the at solar detector. In this work, first the possible standard model parameters are estimated from the combined data of the low energy regime and then the nonstandard effects at the source, at the detector, and from the interplay between source and detector parameters are bounded. The same effects are also investigated for the proposed experiments like LENA and Jinpin Neutrino Experiment with their projected sensitivities.
We propose the operation of textbf{LEvEL}, the Low-Energy Neutrino Experiment at the LHC, a neutrino detector near the Large Hadron Collider Beam Dump. Such a detector is capable of exploring an intense, low-energy neutrino flux and can measure neutrino cross sections that have previously never been observed. These cross sections can inform other future neutrino experiments, such as those aiming to observe neutrinos from supernovae, allowing such measurements to accomplish their fundamental physics goals. We perform detailed simulations to determine neutrino production at the LHC beam dump, as well as neutron and muon backgrounds. Measurements at a few to ten percent precision of neutrino-argon charged current and neutrino-nucleus coherent scattering cross sections are attainable with 100~ton-year and 1~ton-year exposures at LEvEL, respectively, concurrent with the operation of the High Luminosity LHC. We also estimate signal and backgrounds for an experiment exploiting the forward direction of the LHC beam dump, which could measure neutrinos above 100 GeV.
We present a quantitative appraisal of the physics potential for neutrino experiments at the front-end of a muon storage ring. We estimate the forseeable accuracy in the determination of several interesting observables, and explore the consequences of these measurements. We discuss the extraction of individual quark and antiquark densities from polarized and unpolarized deep-inelastic scattering. In particular we study the implications for the undertanding of the nucleon spin structure. We assess the determination of alpha_s from scaling violation of structure functions, and from sum rules, and the determination of sin^2(theta_W) from elastic nu-e and deep-inelastic nu-p scattering. We then consider the production of charmed hadrons, and the measurement of their absolute branching ratios. We study the polarization of Lambda baryons produced in the current and target fragmentation regions. Finally, we discuss the sensitivity to physics beyond the Standard Model.
130 - T. Adams , P. Batra , L. Bugel 2009
This article presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes $ u_{mu}+e^- to u_{mu}+ e^-$ and $ u_{mu}+ e^- to u_e + mu^-$. A sample of Deep Inelastic Scattering events which is over two orders of magnitude larger than past samples will also be obtained. As a result, NuSOnG will be unique among present and planned experiments for its ability to probe neutrino couplings to Beyond the Standard Model physics. Many Beyond Standard Model theories physics predict a rich hierarchy of TeV-scale new states that can correct neutrino cross-sections, through modifications of $Z u u$ couplings, tree-level exchanges of new particles such as $Z^prime$s, or through loop-level oblique corrections to gauge boson propagators. These corrections are generic in theories of extra dimensions, extended gauge symmetries, supersymmetry, and more. The sensitivity of NuSOnG to this new physics extends beyond 5 TeV mass scales. This article reviews these physics opportunities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا