Do you want to publish a course? Click here

Predictive SUSY GUT Model for CP Violation, Fermion Masses and Mixings

209   0   0.0 ( 0 )
 Added by Yue-Liang Wu
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

CP violation, fermion masses and mixing angles including that of neutrinos are studied in an SUSY SO(10)$times Delta (48)times$ U(1) model. The nonabelian SU(3) discrete family symmetry $Delta(48)$ associated with a simple scheme of U(1) charge assignment on various fields concerned in superpotential leads to unique Yukawa coupling matrices with zero textures. Thirteen parameters involving masses and mixing angles in the quark and charged lepton sector are successfully predicted by only four parameters. The masses and mixing angles for the neutrino sector could also be predicted by constructing an appropriate heavy Majorana neutrino mass matrix without involving new parameters. It is found that the atmospheric neutrino deficit, the mass limit put by hot dark matter and the LSND $bar{ u}_{mu} to bar{ u}_{e}$ events may simultaneously be explained, but solar neutrino puzzle can be solved only by introducing a sterile neutrino. An additional parameter is added to obtain the mass and mixing of the sterile neutrino. The hadronic parameters $B_{K}$ and $f_{B}sqrt{B}$ are extracted from the observed $K^{0}$-$bar{K}^{0}$ and $B^{0}$-$bar{B}^{0}$ mixings respectively. The direct CP violation ($epsilon/epsilon$) in kaon decays and the three angles $alpha$, $beta$ and $gamma$ of the unitarity triangle in the CKM matrix are also presented. More precise measurements of $alpha_{s}(M_{Z})$, $|V_{cb}|$, $|V_{ub}/V_{cb}|$, $m_{t}$, as well as various CP violation and neutrino oscillation experiments will provide an important test for the present model and guide us to a more fundamental theory.



rate research

Read More

We study a supersymmetric extension of the Standard Model based on discrete A4xZ3xZ4 flavor symmetry. We obtain quark mixing angles as well as a realistic fermion mass spectrum and we predict tribimaximal leptonic mixing by a spontaneous breaking of A4. The top quark Yukawa interaction is present at the renormalizable level in the superpotential while all the other Yukawa interactions arise only at higher orders. We study the Higgs potential and show that it can potentially solve the so called vacuum alignment problem. The leading order predictions are not spoiled by subleading corrections.
56 - Y. H. Ahn 2018
For all the success of the Standard Model (SM), it is on the verge of being surpassed. In this regard we argue, by showing a minimal flavor-structured model based on the non-Abelian discrete $SL_2(F_3)$ symmetry, that $U(1)$ mixed-gravitational anomaly cancellation could be of central importance in constraining the fermion contents of a new chiral gauge theory. Such anomaly-free condition together with the SM flavor structure demands a condition $k_1,X_1/2=k_2,X_2$ with $X_i$ being a charge of $U(1)_{X_i}$ and $k_i$ being an integer, both of which are flavor dependent. We show that axionic domain-wall condition $N_{rm DW}$ with the anomaly free-condition depends on both $U(1)_X$ charged quark and lepton flavors; the seesaw scale congruent to the scale of Peccei-Quinn symmetry breakdown can be constrained through constraints coming from astrophysics and particle physics. Then the model extended by $SL_2(F_3)times U(1)_X$ symmetry can well be flavor-structured in a unique way that $N_{rm DW}=1$ with the $U(1)_X$ mixed-gravitational anomaly-free condition demands additional Majorana fermion and the flavor puzzles of SM are well delineated by new expansion parameters expressed in terms of $U(1)_X$ charges and $U(1)_X$-$[SU(3)_C]^2$ anomaly coefficients. And the model provides remarkable results on neutrino (hierarchical mass spectra and unmeasurable neutrinoless-double-beta decay rate together with the predictions on atmospheric mixing angle and leptonic Dirac CP phase favored by the recent long-baseline neutrino experiments), QCD axion, and flavored-axion.
We analyse the structure of Yukawa couplings in local SU(5) F-theory models with $E_7$ enhancement. These models are the minimal setting in which the whole flavour structure for the MSSM charged fermions is encoded in a small region of the entire compactification space. In this setup the $E_7$ symmetry is broken down to SU(5) by means of a 7-brane T-brane background, and further to the MSSM gauge group by means of a hypercharge flux that also implements doublet-triplet splitting. At tree-level only one family of quarks and charged leptons is massive, while the other two obtain hierarchically smaller masses when stringy non-perturbative effects are taken into account. We find that there is a unique $E_7$ model with such hierarchical flavour structure. The relative simplicity of the model allows to perform the computation of Yukawa couplings for a region of its parameter space wider than previous attempts, obtaining realistic fermion masses and mixings for large parameter regions. Our results are also valid for local models with $E_8$ enhancement, pointing towards a universal structure to describe realistic fermion masses within this framework.
The neutrino parameters determined from the solar neutrino data and the anti-neutrino parameters determined from KamLAND reactor experiment are in good agreement with each other. However, the best fit points of the two sets differ from each other by about $10^{-5}$ eV$^2$ in mass-square differenc and by about $2^circ$ in the mixing angle. Future solar neutrino and reactor anti-neutrino experiments are likely to reduce the uncertainties in these measurements. This, in turn, can lead to a signal for CPT violation in terms a non-zero difference between neutrino and anti-neutrino parameters. In this paper, we propose a CPT violating mass matrix which can give rise to the above differences in both mass-squared difference and mixing angle and study the constraints imposed by the data on the parameters of the mass matrix.
200 - G. L. Fogli , E. Lisi , A. Marrone 2012
We perform a global analysis of neutrino oscillation data, including high-precision measurements of the neutrino mixing angle theta_13 at reactor experiments, which have confirmed previous indications in favor of theta_13>0. Recent data presented at the Neutrino 2012 Conference are also included. We focus on the correlations between theta_13 and the mixing angle theta_23, as well as between theta_13 and the neutrino CP-violation phase delta. We find interesting indications for theta_23< pi/4 and possible hints for delta ~ pi, with no significant difference between normal and inverted mass hierarchy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا