Do you want to publish a course? Click here

Relation between CPT Violation in Neutrino masses and mixings

126   0   0.0 ( 0 )
 Added by Bipin singh Koranga
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The neutrino parameters determined from the solar neutrino data and the anti-neutrino parameters determined from KamLAND reactor experiment are in good agreement with each other. However, the best fit points of the two sets differ from each other by about $10^{-5}$ eV$^2$ in mass-square differenc and by about $2^circ$ in the mixing angle. Future solar neutrino and reactor anti-neutrino experiments are likely to reduce the uncertainties in these measurements. This, in turn, can lead to a signal for CPT violation in terms a non-zero difference between neutrino and anti-neutrino parameters. In this paper, we propose a CPT violating mass matrix which can give rise to the above differences in both mass-squared difference and mixing angle and study the constraints imposed by the data on the parameters of the mass matrix.



rate research

Read More

108 - M. Abud , F. Buccella , D. Falcone 1999
Assuming a Zee-like matrix for the right-handed neutrino Majorana masses in the see-saw mechanism, one gets maximal mixing for vacuum solar oscillations, a very small value for $U_{e3}$ and an approximate degeneracy for the two lower neutrino masses. The scale of right-handed neutrino Majorana masses is in good agreement with the value expected in a SO(10) model with Pati-Salam $SU(4)ts SU(2)ts SU(2)$ intermediate symmetry.
We analyze many aspects of the phenomenon of the decoherence for neutrinos propagating in long baseline experiments. We show that, in the presence of an off-diagonal term in the dissipative matrix, the Majorana neutrino can violate the CP T symmetry, which, on the contrary, is preserved for Dirac neutrinos. We show that oscillation formulas for Majorana neutrinos depend on the choice of the mixing matrix U. Indeed, different choices of U lead to different oscillation formulas. Moreover, we study the possibility to reveal the differences between Dirac and Majorana neutrinos in the oscillations. We use the present values of the experimental parameters in order to relate our theoretical proposal with experiments.
157 - Gilad Perez , Lisa Randall 2009
We demonstrate that flavor symmetries in warped geometry can provide a natural explanation for large mixing angles and economically explain the distinction between the quark and lepton flavor sectors. We show how to naturally generate Majorana neutrino masses assuming a gauged a U(1)_{B-L} symmetry broken in the UV that generates see-saw masses of the right size. This model requires lepton minimal flavor violation (LMFV) in which only Yukawa matrices (present on the IR brane) break the flavor symmetries. The symmetry-breaking is transmitted to charged lepton bulk mass parameters as well to generate the hierarchy of charged lepton masses. With LMFV, a GIM-like mechanism prevents dangerous flavor-changing processes for charged leptons and permits flavor-changing processes only in the presence of the neutrino Yukawa interaction and are therefore suppressed when the overall scale for the neutrino Yukawa matrix is slightly smaller than one in units of the curvature. In this case the theory can be consistent with a cutoff of 10 TeV and 3 TeV Kaluza-Klein masses.
176 - G. L. Fogli , E. Lisi , A. Marrone 2012
We perform a global analysis of neutrino oscillation data, including high-precision measurements of the neutrino mixing angle theta_13 at reactor experiments, which have confirmed previous indications in favor of theta_13>0. Recent data presented at the Neutrino 2012 Conference are also included. We focus on the correlations between theta_13 and the mixing angle theta_23, as well as between theta_13 and the neutrino CP-violation phase delta. We find interesting indications for theta_23< pi/4 and possible hints for delta ~ pi, with no significant difference between normal and inverted mass hierarchy.
If dark energy (DE) couples to neutrinos, then there may be apparent violations of Lorentz/CPT invariance in neutrino oscillations. The DE-induced Lorentz/CPT violation takes a specific form that introduces neutrino oscillations that are energy independent, differ for particles and antiparticles, and can lead to novel effects for neutrinos propagating through matter. We show that ultra-high-energy neutrinos may provide one avenue to seek this type of Lorentz/CPT violation in u_mu- u_tau oscillations, improving the current sensitivity to such effects by seven orders of magnitude. Lorentz/CPT violation in electron-neutrino oscillations may be probed with the zenith-angle dependence for high-energy atmospheric neutrinos. The ``smoking gun, for DE-neutrino coupling would, however, be a dependence of neutrino oscillations on the direction of the neutrino momentum relative to our peculiar velocity with respect to the CMB rest frame. While the amplitude of this directional dependence is expected to be small, it may nevertheless be worth seeking in current data and may be a target for future neutrino experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا