Do you want to publish a course? Click here

Collider Implications of Kaluza-Klein Excitations of the Gluons

60   0   0.0 ( 0 )
 Added by Satyanarayan Nandi
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

We consider an asymmetric string compactification scenario in which the SM gauge bosons can propagate into one TeV$^{-1}$-size extra compact dimension. These gauge bosons have associated KK excitations that present additional contributions to the SM processes. We calculate the effects that the KK excitations of the gluons, $g^{star}$s, have on multijet final state production in proton-proton collisions at the Large Hadron Collider energy. In the case of dijet final states with very high $p_{{}_T}$, the KK signal due to the exchanges of the $g^{star}$s is several factors greater than the SM background for compactification scales as high as about 7 TeV. The high-$p_{{}_T}$ effect is not as dramatic for the direct production of a single on-shell $g^{star}$, which subsequently decays into $q$-$bar{q}$ pairs, where the KK signal significantly exceeds the SM three-jet background for compactification scales up to about 3 TeV. We also present our results for the four-jet final state signal from the direct production of two on-shell $g^{star}$s.



rate research

Read More

93 - Ben Lillie , Jing Shu , 2007
We study the properties of $g^{1}$, the first excited state of the gluon in representative variants of the Randall Sundrum model with the Standard Model fields in the bulk. We find that measurements of the coupling to light quarks (from the inclusive cross-section for $ppto g^{1} to tbar t$), the coupling to bottom quarks (from the rate of $ppto g^{1} b$), as well as the overall width, can provide powerful discriminants between the models. In models with large brane kinetic terms, the $g^1$ resonance can even potentially be discovered decaying into dijets against the large QCD background. We also derive bounds based on existing Tevatron searches for resonant $t bar{t}$ production and find that they require $M_{g^{1}} gtrsim 950$ GeV. In addition we explore the pattern of interference between the $g^1$ signal and the non-resonant SM background, defining an asymmetry parameter for the invariant mass distribution. The interference probes the relative signs of the couplings of the $g^{1}$ to light quark pairs and to $tbar t$, and thus provides an indication that the top is localized on the other side of the extra dimension from the light quarks, as is typical in the RS framework.
We explore the reach of a 100 TeV proton collider to discover KK gluons in a warped extra dimension. These particles are templates for color adjoint vectors that couple dominantly to the top quark. We examine their production rate at NLO in the six-flavor m-ACOT scheme for a variety of reference models defining their coupling to quarks, largely inspired by the RS model of a warped extra dimension. In agreement with previous calculations aimed at lower energy machines, we find that the NLO corrections are typically negative, resulting in a $K$-factor of around 0.7 (depending on the model) and with a residual scale dependence on the order of $pm 20%$, greater than the variation from the scale exhibited by the na{i}ve LO estimate.
The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons ($g_{KK}$): one where it is produced in association with one or more hard jets. The cross-section for the $g_{KK}+$ jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the $qg$ and the $gg$ initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different $g_{KK}$ masses in bulk-RS models.
In Universal Extra Dimension models, the lightest Kaluza-Klein (KK) particle is generically the first KK excitation of the photon and can be stable, serving as particle dark matter. We calculate the thermal relic abundance of the KK photon for a general mass spectrum of KK excitations including full coannihilation effects with all (level one) KK excitations. We find that including coannihilation can significantly change the relic abundance when the coannihilating particles are within about 20% of the mass of the KK photon. Matching the relic abundance with cosmological data, we find the mass range of the KK photon is much wider than previously found, up to about 2 TeV if the masses of the strongly interacting level one KK particles are within five percent of the mass of the KK photon. We also find cases where several coannihilation channels compete (constructively and destructively) with one another. The lower bound on the KK photon mass, about 540 GeV when just right-handed KK leptons coannihilate with the KK photon, relaxes upward by several hundred GeV when coannihilation with electroweak KK gauge bosons of the same mass is included.
The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like five dimensional black hole in the vicinity of horizon and four dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, $SU(2)times U(1)simeq U(2)$, we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives a strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Klein black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا