Do you want to publish a course? Click here

Kaluza-Klein gluon + jets associated production at the Large Hadron Collider

79   0   0.0 ( 0 )
 Added by Abhishek Iyer M
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons ($g_{KK}$): one where it is produced in association with one or more hard jets. The cross-section for the $g_{KK}+$ jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the $qg$ and the $gg$ initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different $g_{KK}$ masses in bulk-RS models.

rate research

Read More

We investigate the viability of observing charged Higgs bosons (H^+/-) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W-decay, within different scenarios of the Minimal Supersymmetric Standard Model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible Standard Model background from W+2 jets can be controlled by applying appropriate cuts and find that the size of a possible signal depends on the cuts needed to suppress QCD backgrounds and misidentifications. In the standard maximal mixing scenario of the MSSM we find a viable signal for large tan(beta) and intermediate H^+/- masses (~m_t) when using optimistic cuts whereas for more pessimistic ones we only find a viable signal for very large tan(beta) (>~50). We have also investigated a special class of MSSM scenarios with large mass-splittings among the heavy Higgs bosons where the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the CP-violating phases. Even so we find that the signal after cuts remains small except for small masses (~< m_t) with optimistic cuts. Finally, in all the scenarios we have investigated we have only found small CP-asymmetries.
We calculate the SUSY-QCD corrections to the inclusive total cross sections of the associated production processes $ppto W^{pm}H^{mp}+X$ in the Minimal Supersymmetric Standard Model(MSSM) at the CERN Large Hadron Collider(LHC). The SUSY-QCD corrections can increase and decrease the total cross sections depending on the choice of the SUSY parameters. When $mu<0$ the SUSY-QCD corrections increase the leading-order (LO) total cross sections significantly for large tan$beta$ ($sim 40$), which can exceed 10% and have the opposite sign with respect to the QCD and the SUSY-EW corrections, and thus cancel with them to some extent. Moreover, we also investigate the effects of the SUSY-QCD on the differential distribution of cross sections in transverse momentum $p_T$ and rapidity Y of W-boson, and the invariant mass $M_{W^+H^-}$.
The production of two weak bosons at the Large Hadron Collider will be one of the most important sources of SM backgrounds for final states with multiple leptons. In this paper we consider several quantities that can help normalize the production of weak boson pairs. Ratios of inclusive cross-sections for production of two weak bosons and Drell-Yan are investigated and the corresponding theoretical errors are evaluated. The possibility of predicting the jet veto survival probability of VV production from Drell-Yan data is also considered. Overall, the theoretical errors on all quantities remain less than 5-20%. The dependence of these quantities on the center of mass energy of the proton-proton collision is also studied.
We consider an asymmetric string compactification scenario in which the SM gauge bosons can propagate into one TeV$^{-1}$-size extra compact dimension. These gauge bosons have associated KK excitations that present additional contributions to the SM processes. We calculate the effects that the KK excitations of the gluons, $g^{star}$s, have on multijet final state production in proton-proton collisions at the Large Hadron Collider energy. In the case of dijet final states with very high $p_{{}_T}$, the KK signal due to the exchanges of the $g^{star}$s is several factors greater than the SM background for compactification scales as high as about 7 TeV. The high-$p_{{}_T}$ effect is not as dramatic for the direct production of a single on-shell $g^{star}$, which subsequently decays into $q$-$bar{q}$ pairs, where the KK signal significantly exceeds the SM three-jet background for compactification scales up to about 3 TeV. We also present our results for the four-jet final state signal from the direct production of two on-shell $g^{star}$s.
New physics at the TeV scale is highly anticipated at the LHC. New particles with color, if within the LHC energy reach, will be copiously produced. One such particle is a diquark, having the quantum numbers of two quarks, and can be a scalar or a vector. It will decay to two light quarks, or two top quarks, or a top and a light quark, (up or down type depending on the quantum number of the produced diquark). If singly produced, it can be looked for as a dijet resonance, or as giving extra contribution to the single top production or tt production. In this work, we consider a color sextet vector diquark having the quantum number of (ud) type, its resonance production, and the subsequent decay to tb, giving rise to excess contribution to the single top production. Even though the diquark mass is large, its strong resonance production dominate the weak production of tb for a wide range of the diquark mass. Also its subsequent decay to tb produce a very hard b-jet compared to the usual electroweak production. In addition, the missing energy in the final state event is much larger from the massive diquark decays. Thus, with suitable cuts, the final state with b, bar{b} and a charged lepton together with large missing energy stands out compared to the Standard Model background. We make a detailed study of both the signal and the background. We find that such a diquark is accessible at the 7 TeV LHC upto a mass of about 3.3 TeV with the luminosity 1 fb^{-1}, while the reach goes up to about 4.3 TeV with a luminosity of 10 fb^{-1}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا