We study dynamical supersymmetry breaking by non perturbative lattice techniques in a class of two-dimensional N=1 Wess-Zumino models. We work in the Hamiltonian formalism and analyze the phase diagram by analytical strong-coupling expansions and explicit numerical simulations with Green Function Monte Carlo methods.
Supersymmetric lattice Ward-Takahashi identities are investigated perturbatively up to two-loop corrections for super doubler approach of $N=2$ lattice Wess-Zumino models in 1- and 2-dimensions. In this approach notorious chiral fermion doublers are treated as physical particles and momentum conservation is modified in such a way that lattice Leibniz rule is satisfied. The two major difficulties to keep exact lattice supersymmetry are overcome. This formulation defines, however, nonlocal field theory. Nevertheless we confirm that exact supersymmetry on the lattice is realized for all supercharges at the quantum level. Delicate issues of associativity are also discussed.
A new approach to the study of the transition point in a class of two dimensional Wess-Zumino models is presented. The method is based on the calculation of rigorous lower bounds on the ground state energy density in the infinite lattice limit. Such bounds are useful in the discussion of supersymmetry phase transition. The transition point is then determined and compared with recent results based on large-scale Green Function Monte Carlo simulations with good agreement.
We consider a lattice formulation of the four dimensional N=1 Wess-Zumino model in terms of the Ginsparg-Wilson relation. This formulation has an exact supersymmetry on the lattice. The lattice action is invariant under a deformed supersymmetric transformation which is non-linear in the scalar fields and it is determined by an iterative procedure in the coupling constant to all orders in perturbation theory. We also show that the corresponding Ward-Takahashi identity is satisfied at fixed lattice spacing. The calculation is performed in lattice perturbation theory up to order $g^3$ (two-loop) and the Ward-Takahashi identity (containing 110 connected non-tadpole Feynman diagrams) is satisfied at fixed lattice spacing thanks to this exact lattice supersymmetry.
We study dynamical supersymmetry breaking and the transition point by non-perturbative lattice techniques in a class of two-dimensional N=1 Wess-Zumino model. The method is based on the calculation of rigorous lower bounds on the ground state energy density in the infinite-lattice limit. Such bounds are useful in the discussion of supersymmetry phase transition. The transition point is determined with this method and then compared with recent results based on large-scale Green Function Monte Carlo simulations with good agreement.
A lattice formulation of the four dimensional Wess-Zumino model that uses Ginsparg-Wilson fermions and keeps exact supersymmetry is presented. The supersymmetry transformation that leaves invariant the action at finite lattice spacing is determined by performing an iterative procedure in the coupling constant. The closure of the algebra, generated by this transformation is also showed.