Do you want to publish a course? Click here

Dynamical supersymmetry breaking and phase diagram of the lattice Wess-Zumino model

58   0   0.0 ( 0 )
 Added by Alessandra Feo
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We study dynamical supersymmetry breaking and the transition point by non-perturbative lattice techniques in a class of two-dimensional N=1 Wess-Zumino model. The method is based on the calculation of rigorous lower bounds on the ground state energy density in the infinite-lattice limit. Such bounds are useful in the discussion of supersymmetry phase transition. The transition point is determined with this method and then compared with recent results based on large-scale Green Function Monte Carlo simulations with good agreement.



rate research

Read More

A new approach to the study of the transition point in a class of two dimensional Wess-Zumino models is presented. The method is based on the calculation of rigorous lower bounds on the ground state energy density in the infinite lattice limit. Such bounds are useful in the discussion of supersymmetry phase transition. The transition point is then determined and compared with recent results based on large-scale Green Function Monte Carlo simulations with good agreement.
We study dynamical supersymmetry breaking by non perturbative lattice techniques in a class of two-dimensional N=1 Wess-Zumino models. We work in the Hamiltonian formalism and analyze the phase diagram by analytical strong-coupling expansions and explicit numerical simulations with Green Function Monte Carlo methods.
A lattice formulation of the four dimensional Wess-Zumino model that uses Ginsparg-Wilson fermions and keeps exact supersymmetry is presented. The supersymmetry transformation that leaves invariant the action at finite lattice spacing is determined by performing an iterative procedure in the coupling constant. The closure of the algebra, generated by this transformation is also showed.
127 - A. Feo 2013
We consider a lattice formulation of the four dimensional N=1 Wess-Zumino model in terms of the Ginsparg-Wilson relation. This formulation has an exact supersymmetry on the lattice. The lattice action is invariant under a deformed supersymmetric transformation which is non-linear in the scalar fields and it is determined by an iterative procedure in the coupling constant to all orders in perturbation theory. We also show that the corresponding Ward-Takahashi identity is satisfied at fixed lattice spacing. The calculation is performed in lattice perturbation theory up to order $g^3$ (two-loop) and the Ward-Takahashi identity (containing 110 connected non-tadpole Feynman diagrams) is satisfied at fixed lattice spacing thanks to this exact lattice supersymmetry.
We study the lattice N=1 Wess-Zumino model in two dimensions and we construct a sequence $rho^{(L)}$ of exact lower bounds on its ground state energy density $rho$, converging to $rho$ in the limit $Ltoinfty$. The bounds $rho^{(L)}$ can be computed numerically on a finite lattice with $L$ sites and can be exploited to discuss dynamical symmetry breaking. The transition point is determined and compared with recent results based on large-scale Green Function Monte Carlo simulations with good agreement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا