Do you want to publish a course? Click here

The RHMC Algorithm for 2 Flavours of Dynamical Staggered Fermions

69   0   0.0 ( 0 )
 Added by Anthony D. Kennedy
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

We describe an implementation of the Rational Hybrid Monte Carlo (RHMC) algorithm for dynamical computations with two flavours of staggered quarks. We discuss several variants of the method, the performance and possible sources of error for each of them, and we compare the performance and results to the inexact R algorithm.



rate research

Read More

QCD results are presented for a 2+1 flavour fermion clover action (which we call the SLiNC action). A method of tuning the quark masses to their physical values is discussed. In this method the singlet quark mass is kept fixed, which solves the problem of different renormalisations (for singlet and non-singlet quark masses) occuring for non-chirally invariant lattice fermions. This procedure enables a wide range of quark masses to be probed, including the case with a heavy up-down quark mass and light strange quark mass. Preliminary results show the correct splittings for the baryon (octet and) decuplet spectrum.
A numerical calculation of the lattice staggered renormalisation constants at $beta = 5.35$, $m = 0.01$ is presented. It is seen that there are considerable non-perturbative effects present. As an application the vector decay constant $f_rho$ is estimated. (LAT92 contribution, one LATEX file with 3 postscript figures appended.)
108 - P.Perez-Rubio , S.Sint 2007
In order to study the running coupling in four-flavour QCD, we review the set-up of the Schrodinger functional (SF) with staggered quarks. Staggered quarks require lattices which, in the usual counting, have even spatial lattice extent $L/a$ while the time extent $T/a$ must be odd. Setting $T=L$ is therefore only possible up to ${rm O}(a)$, which introduces different cutoff effects already in the pure gauge theory. We re-define the SF such as to cope with this situation and determine the corresponding classical background field. A perturbative calculation yields the coefficient of the pure gauge ${rm O}(a)$ boundary counterterm to one-loop order.
We consider the Rational Hybrid Monte Carlo algorithm for performing exact 2+1 flavour fermion simulations. The specific cases of ASQTAD and domain wall fermions are considered. We find that in both cases the naive performance is similar to conventional hybrid algorithms.
{We present the results of a numerical investigation of SU(2) gauge theory with $N_f=3/2$ flavours of fermions, corresponding to 3 Majorana fermions, which transform in the adjoint representation of the gauge group. At two values of the gauge coupling, the masses of bound states are considered as a function of the PCAC quark mass. The scaling of bound states masses indicates an infrared conformal behaviour of the theory. We obtain estimates for the fixed-point value of the mass anomalous dimension $gamma^*$ from the scaling of masses and from the scaling of the mode number of the Wilson-Dirac operator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا