QCD results are presented for a 2+1 flavour fermion clover action (which we call the SLiNC action). A method of tuning the quark masses to their physical values is discussed. In this method the singlet quark mass is kept fixed, which solves the problem of different renormalisations (for singlet and non-singlet quark masses) occuring for non-chirally invariant lattice fermions. This procedure enables a wide range of quark masses to be probed, including the case with a heavy up-down quark mass and light strange quark mass. Preliminary results show the correct splittings for the baryon (octet and) decuplet spectrum.
For the Stout Link Non-perturbative Clover (SLiNC) action we determine in one-loop lattice perturbation theory the critical hopping parameter $kappa_c$ and the clover parameter $c_{SW}$ which is needed for $mathcal{O}(a)$ improvement. Performing this calculation off-shell we are also able to compute the non gauge invariant quark field improvement coefficient $c_{NGI}$. Additionally, we present first results for the renormalization factors of the scalar, pseudoscalar, vector and axial vector currents. We discuss mean field improvement for the SLiNC action.
We discuss an action in which the fermion matrix has single level stout smearing for the hopping terms together with unsmeared links for the clover term. With the (tree level) Symanzik improved gluon action this constitutes the Stout Link Non-perturbative Clover or SLiNC action. To cancel O(a) terms the clover coefficient, csw, has to be tuned. We present here preliminary results of a non-perturbative determination of csw using the Schrodinger functional and as a by-product also a determination of the critical hopping parameter. A determination of the renormalisation constant for the local vector current is also given. Comparisons of the results are made with lowest order perturbation theory results.
We describe an implementation of the Rational Hybrid Monte Carlo (RHMC) algorithm for dynamical computations with two flavours of staggered quarks. We discuss several variants of the method, the performance and possible sources of error for each of them, and we compare the performance and results to the inexact R algorithm.
QCD lattice simulations determine hadron masses as functions of the quark masses. From the gradients of these masses and using the Feynman-Hellmann theorem the hadron sigma terms can then be determined. We use here a novel approach of keeping the singlet quark mass constant in our simulations which upon using an SU(3) flavour symmetry breaking expansion gives highly constrained (i.e. few parameter) fits for hadron masses in a multiplet. This is a highly advantageous procedure for determining the hadron mass gradient as it avoids the use of delicate chiral perturbation theory. We illustrate the procedure here by estimating the light and strange sigma terms for the baryon octet.
QCD lattice simulations yield hadron masses as functions of the quark masses. From the gradients of the hadron masses the sigma terms can then be determined. We consider here dynamical 2+1 flavour simulations, in which we start from a point of the flavour symmetric line and then keep the singlet or average quark mass fixed as we approach the physical point. This leads to highly constrained fits for hadron masses in a multiplet. The gradient of this path for a hadron mass then gives a relation between the light and strange sigma terms. A further relation can be found from the change in the singlet quark mass along the flavour symmetric line. This enables light and strange sigma terms to be estimated for the baryon octet.