Do you want to publish a course? Click here

Production of Cold Antihydrogen with ATHENA for Fundamental Studies

196   0   0.0 ( 0 )
 Added by Alban Kellerbauer
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

Since the beginning of operations of the CERN Antiproton Decelerator in July 2000, the successful deceleration, storage and manipulation of antiprotons has led to remarkable progress in the production of antimatter. The ATHENA Collaboration were the first to create and detect cold antihydrogen in 2002, and we can today produce large enough amounts of antiatoms to study their properties as well as the parameters that govern their production rate.



rate research

Read More

Atomic systems of antiparticles are the laboratories of choice for tests of CPT symmetry with antimatter. The ATHENA experiment was the first to report the production of copious amounts of cold antihydrogen in 2002. This article reviews some of the insights that have since been gained concerning the antihydrogen production process as well as the external and internal properties of the produced anti-atoms. Furthermore, the implications of those results on future prospects of symmetry tests with antimatter are discussed.
We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERNs Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.
201 - Ralf Lehnert 2016
Various approaches to physics beyond the Standard Model can lead to small violations of CPT invariance. Since CPT symmetry can be measured with ultrahigh precision, CPT tests offer an interesting phenomenological avenue to search for underlying physics. We discuss this reasoning in more detail, comment on the connection between CPT and Lorentz invariance, and review how CPT breaking would affect the (anti)hydrogen spectrum.
We have demonstrated production of antihydrogen in a 1$,$T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3$,$T) and ATRAP (5$,$T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the ALPHA (Antihydrogen Laser PHysics Apparatus) device, which can capture and cool antiprotons at 3$,$T, and then mix the antiprotons with positrons at 1$,$T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed.
ALPHA is an international project that has recently begun experimentation at CERNs Antiproton Decelerator (AD) facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms with the ultimate goal of precise spectroscopic comparisons with hydrogen. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا