Do you want to publish a course? Click here

CPT-symmetry studies with antihydrogen

202   0   0.0 ( 0 )
 Added by Ralf Lehnert
 Publication date 2016
  fields
and research's language is English
 Authors Ralf Lehnert




Ask ChatGPT about the research

Various approaches to physics beyond the Standard Model can lead to small violations of CPT invariance. Since CPT symmetry can be measured with ultrahigh precision, CPT tests offer an interesting phenomenological avenue to search for underlying physics. We discuss this reasoning in more detail, comment on the connection between CPT and Lorentz invariance, and review how CPT breaking would affect the (anti)hydrogen spectrum.



rate research

Read More

187 - Neil Russell 2008
Signals of CPT and Lorentz violation are possible in the context of spectroscopy using hydrogen and antihydrogen. We apply the Standard-Model Extension, a broad framework for Lorentz breaking in physics, to various transitions in the hydrogen and antihydrogen spectra. The results show an unsuppressed effect in the transition between the upper two hyperfine sublevels of the ground state of these systems. We also discuss related tests in Penning traps, and recent work on Lorentz violation in curved spacetime.
Since the beginning of operations of the CERN Antiproton Decelerator in July 2000, the successful deceleration, storage and manipulation of antiprotons has led to remarkable progress in the production of antimatter. The ATHENA Collaboration were the first to create and detect cold antihydrogen in 2002, and we can today produce large enough amounts of antiatoms to study their properties as well as the parameters that govern their production rate.
We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERNs Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.
We explore the breaking of Lorentz and CPT invariance in strong interactions at low energy in the framework of chiral perturbation theory. Starting from the set of Lorentz-violating operators of mass-dimension five with quark and gluon fields, we construct the effective chiral Lagrangian with hadronic and electromagnetic interactions induced by these operators. We develop the power-counting scheme and discuss loop diagrams and the one-pion-exchange nucleon-nucleon potential. The effective chiral Lagrangian is the basis for calculations of low-energy observables with hadronic degrees of freedom. As examples, we consider clock-comparison experiments with nuclei and spin-precession experiments with nucleons in storage rings. We derive strict limits on the dimension-five tensors that quantify Lorentz and CPT violation.
100 - Ralf Lehnert 2006
The breakdown of spacetime symmetries has recently been identified as a promising candidate signal for underlying physics, possibly arising through quantum-gravitational effects. This talk gives an overview over various aspects of CPT- and Lorentz-violation research. Particular emphasis is given to the interplay between CPT, Lorentz, and translation symmetry, mechanisms for CPT and Lorentz breaking, and the construction of a low-energy quantum-field description of such effect. This quantum field framework, called the SME, is employed to determine possible phenomenological consequences of CPT and Lorentz violation for neutral-meson interferometry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا