Do you want to publish a course? Click here

Towards Antihydrogen Confinement with the ALPHA Antihydrogen Trap

320   0   0.0 ( 0 )
 Added by Makoto C. Fujiwara
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

ALPHA is an international project that has recently begun experimentation at CERNs Antiproton Decelerator (AD) facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms with the ultimate goal of precise spectroscopic comparisons with hydrogen. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.



rate research

Read More

ALPHA is an experiment at CERN, whose ultimate goal is to perform a precise test of CPT symmetry with trapped antihydrogen atoms. After reviewing the motivations, we discuss our recent progress toward the initial goal of stable trapping of antihydrogen, with some emphasis on particle detection techniques.
Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here we report the observation of anti-atom confinement for 1000 s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of CPT symmetry and cooling to temperatures where gravitational effects could become apparent.
We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERNs Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.
Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.
Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا