The transparency of carbon for (p,2p) quasi-elastic events was measured at beam energies ranging from 6 to 14.5 GeV at 90 degrees c.m. The four momentum transfer squared q*q ranged from 4.8 to 16.9 (GeV/c)**2. We present the observed energy dependence of the ratio of the carbon to hydrogen cross sections. We also apply a model for the nuclear momentum distribution of carbon to normalize this transparency ratio. We find a sharp rise in transparency as the beam energy is increased to 9 GeV and a reduction to approximately the Glauber level at higher energies.
We present a new measurement of the energy dependence of nuclear transparency from AGS experiment E850, performed using the EVA solenoidal spectrometer, upgraded since 1995. Using a secondary beam from the AGS accelerator, we simultaneously measured $pp$ elastic scattering from hydrogen and $(p,2p)$ quasi-elastic scattering in carbon at incoming momenta of 5.9, 8.0, 9.0, 11.7 and 14.4 GeV/c. This incident momentum range corresponds to a $Q^{2}$ region between 4.8 and 12.7 (GeV/c)$^{2}$. The detector allowed us to do a complete kinematic analysis for the center-of-mass polar angles in the range $85^{circ}-90^{circ}$. We report on the measured variation of the nuclear transparency with energy and compare the new results with previous measurements.
The use of nuclear transparency effect of pi^{-}-mesons in proton, and deuteron induced interactions with carbon nuclei at 4.2A GeV/c, to get information about the properties of nuclear matter, is presented in this work. Half angle (theta_{1/2}) technique is used to extract information on nuclear transparency effect. The theta_{1/2} divides the multiplicity of charged particles into two equal parts depending on their polar angle in the lab. frame in pp interactions. Particles with angle smaller than (incone particles) and greater than (outcone particles) theta_{1/2} are considered separate. The average values of multiplicity, momentum and transverse momentum of the pi^{-}-mesons are analyzed as a function of a number of identified protons in an event. We observed evidences in the data which could be considered as transparency effect. For quantitative analysis, the results are compared with cascade model. The observed effects are categorized into leading effect transparency and medium effect transparency. The transparency in the latter case could be the reason of collective interactions of grouped nucleons with the incident particles.
We investigate the impact of ambiguities coming from the choice of optical potentials and nucleon-nucleon scattering cross sections on the spectroscopic factors extracted from the $^{12}$C($p$,$2p$)$^{11}$B reaction. These ambiguities are evaluated by analyzing the cross sections of the $^{12}$C($p$,$2p$)$^{11}$B reaction at 100 and 200 MeV within the framework of the distorted-wave impulse approximation with realistic choices of nuclear inputs. The results show that the studied ambiguities are considerably large in this energy region and careful choices of nuclear inputs used in the reaction calculations are required to extract reliable structure information.
New parameter free calculations including a variety of necessary kinematic and dynamic effects show that the results of BNL $(p,2p)$ measurements are consistent with the expectations of color transparency.
The reaction 12C(p,2p+n) was measured at beam momenta of 5.9 and 7.5 GeV/c.. We established the quasi-elastic character of the reaction C(p,2p) at $theta_{cm}simeq 90^o$, in a kinematically complete measurement. The neutron momentum was measured in triple coincidence with the two emerging high momentum protons. We present the correlation between the momenta of the struck target proton and the neutron. The events are associated with the high momentum components of the nuclear wave function. We conclude that two-nucleon short range correlations have been seen experimentally. The conclusion is based on kinematical correlations and is not based on specific theoretical models.