Do you want to publish a course? Click here

Asymptotic states in brane cosmology with a nonlocal anisotropic stress

122   0   0.0 ( 0 )
 Added by Toporenskij A. V.
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the dynamics of a Bianchi I brane Universe in the presence of a nonlocal anisotropic stress ${cal P}_{mu u}$ proportional to a dark energy ${cal U}$. Using this ansatz for the case ${cal U} > 0$ we prove that if a matter on a brane satisfies the equation of state $p=(gamma-1)rho$ with $gamma le 4/3$ then all such models isotropize. For $gamma > 4/3$ anisotropic future asymptotic states are found. We also describe the past asymptotic regimes for this model.



rate research

Read More

In this article, we study a type of one-field approach for open inflationary universe scenario in the context of braneworld models with a Gauss-Bonnet correction term. For a one-bubble universe model, we determine and characterize the existence of the Coleman-De Lucia instanton together with the period of inflation after tunneling has occurred. Our results are compared those analogous obtained when the usual Einstein Theory of Gravitation is used.
We derive a system of cosmological equations for a braneworld with induced curvature which is a junction between several bulk spaces. The permutation symmetry of the bulk spaces is not imposed, and the values of the fundamental constants, and even the signatures of the extra dimension, may be different on different sides of the brane. We then consider the usual partial case of two asymmetric bulk spaces and derive an exact closed system of scalar equations on the brane. We apply this result to the cosmological evolution on such a brane and describe its various partial cases.
57 - F. Canfora , G. Vilasi 2005
The matching between two 4-dimensional PP-waves is discussed by using Israels matching conditions. Physical consequences on the dynamics of (cosmic) strings are analyzed. The extension to space-time of arbitrary dimension is discussed and some interesting features related to the brane world scenario, BPS states in gravity and Dirac-like quantization conditions are briefly described.
Study the behaviour and the evolution of the cosmological field equations in an homogeneous and anisotropic spacetime with two scalar fields coupled in the kinetic term. Specifically, the kinetic energy for the scalar field Lagrangian is that of the Chiral model and defines a two-dimensional maximally symmetric space with negative curvature. For the background space we assume the locally rotational spacetime which describes the Bianchi I, the Bianchi III and the Kantowski-Sachs anisotropic spaces. We work on the $H$% -normalization and we investigate the stationary points and their stability. For the exponential potential we find a new exact solution which describes an anisotropic inflationary solution. The anisotropic inflation is always unstable, while future attractors are the scaling inflationary solution or the hyperbolic inflation. For scalar field potential different from the exponential, the de Sitter universe exists.
The Randall-Sundrum scenario, with a 1+3-dimensional brane in a 5-dimensional bulk spacetime, can be generalized in various ways. We consider the case where the Z2-symmetry at the brane is relaxed, and in addition the gravitational action is generalized to include an induced gravity term on the brane. We derive the complete set of equations governing the gravitational dynamics for a general brane and bulk, and identify how the asymmetry and the induced gravity act as effective source terms in the projected field equations on the brane. For a Friedmann brane in an anti de Sitter bulk, the solution of the Friedmann equation is given by the solution of a quartic equation. We find the perturbative solutions for small asymmetry, which has an effect at late times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا