No Arabic abstract
We derive a system of cosmological equations for a braneworld with induced curvature which is a junction between several bulk spaces. The permutation symmetry of the bulk spaces is not imposed, and the values of the fundamental constants, and even the signatures of the extra dimension, may be different on different sides of the brane. We then consider the usual partial case of two asymmetric bulk spaces and derive an exact closed system of scalar equations on the brane. We apply this result to the cosmological evolution on such a brane and describe its various partial cases.
At high energies on a cosmological brane of Randall-Sundrum type, particle interactions can produce gravitons that are emitted into the bulk and that can feed a bulk black hole. We generalize previous investigations of such radiating brane-worlds by allowing for a breaking of Z_2-symmetry, via different bulk cosmological constants and different initial black hole masses on either side of the brane. One of the notable features of asymmetry is a suppression of the asymptotic level of dark radiation, which means that nucleosynthesis constraints are easier to satisfy. There are also models where the radiation escapes to infinity on one or both sides, rather than falling into a black hole, but these models can have negative energy density on the brane.
The Randall-Sundrum scenario, with a 1+3-dimensional brane in a 5-dimensional bulk spacetime, can be generalized in various ways. We consider the case where the Z2-symmetry at the brane is relaxed, and in addition the gravitational action is generalized to include an induced gravity term on the brane. We derive the complete set of equations governing the gravitational dynamics for a general brane and bulk, and identify how the asymmetry and the induced gravity act as effective source terms in the projected field equations on the brane. For a Friedmann brane in an anti de Sitter bulk, the solution of the Friedmann equation is given by the solution of a quartic equation. We find the perturbative solutions for small asymmetry, which has an effect at late times.
In this article, we study a type of one-field approach for open inflationary universe scenario in the context of braneworld models with a Gauss-Bonnet correction term. For a one-bubble universe model, we determine and characterize the existence of the Coleman-De Lucia instanton together with the period of inflation after tunneling has occurred. Our results are compared those analogous obtained when the usual Einstein Theory of Gravitation is used.
We derive the effective cosmological equations for a non-$mathbb{Z}_2$ symmetric codimension one brane embedded in an arbitrary D-dimensional bulk spacetime, generalizing the $D=5,6$ cases much studied previously. As a particular case, this may be considered as a regularized codimension (D-4) brane avoiding the problem of curvature divergence on the brane. We apply our results to the case of spherical symmetry around the brane and to partly compactified AdS-Schwarzschild bulks.
We discuss the correspondence between the DGP brane cosmology and 5D Ricci-flat cosmology by letting their metrics equal each other. By this correspondence, a specific geometrical property of the arbitrary integral constant I in DGP metric is given and it is related to the curvature of 5D bulk. At the same time, the relation of arbitrary functions $mu$ and $ u$ in a class of Ricci-flat solutions is obtained from DGP brane metric.