No Arabic abstract
The field equations of Mannheims theory of conformal gravity with dynamic mass generation are solved numerically in the interior and exterior regions of a model spherically symmetric sun with matched boundary conditions at the surface. The model consists of a generic fermion field inside the sun, and a scalar Higgs field in both the interior and exterior regions. From the conformal geodesic equations it is shown how an asymptotic gradient in the Higgs field causes an anomalous radial acceleration in qualitative agreement with that observed on the Pioneer 10/11, Galileo, and Ulysses spacecraft. At the same time the standard solar system tests of general relativity are preserved within the limits of observation.
We study here, using the Mannheim-Kazanas solution of Weyl conformal theory, the mass decomposition in the representative subsample of $57$ early-type elliptical lens galaxies of the SLACS on board the HST. We begin by showing that the solution need not be an exclusive solution of conformal gravity but can also be viewed as a solution of a class of $f(R)$ gravity theories coupled to non-linear electrodynamics thereby rendering the ensuing results more universal. Since lensing involves light bending, we shall first show that the solution adds to Schwarzschild light bending caused by the luminous mass ($M_{ast }$) a positive contribution $+gamma R$ contrary to the previous results in the literature, thereby resolving a long standing problem. The cause of the error is critically examined. Applying the expressions for light bending together with an input equating Einstein and Weyl angles, we develop a novel algorithm for separating the luminous component from the total lens mass (luminous+dark) within the Einstein radius. Our results indicate that the luminous mass estimates differ from the observed total lens masses by a linear proportionality factor. In quantitative detail, we observe that the ratios of luminous over total lens mass ($f^{ast }$) within the Einstein radius of individual galaxies take on values near unity, many of which remarkably fall inside or just marginally outside the specified error bars obtained from a simulation based on the Bruzual-Charlot stellar population synthesis model together with the Salpeter IMF favored on the ground of metallicity [Grillo,2009]. We shall also calculate the average dark matter density of individual galaxies within their respective Einstein spheres. The present approach, being truly analytic, seems to be the first of its kind attempting to provide a new decomposition scheme distinct from the simulational ones.
In this work, a correspondence between black hole solutions of conformal and massive theories of gravity is found. It is seen that this correspondence imposes some constraints on parameters of these theories. What is more, a relation between the mass of black holes and the parameters of massive gravity is found. Indeed, the acceptable ranges of massive gravity parameters ($c_{1}$ and $c_{2}$) are found. It is shown that by considering the positive mass of black holes, some ranges of $c_{1}$ and $c_{2}$ are acceptable.
The recent discovery of dark energy has challenged Einsteins general theory of relativity as a complete model for our macroscopic universe. From a theoretical view, the challenge is even stronger: general relativity clearly does not extend to the very small, where quantum mechanics holds sway. Fundamental physics models thus require some major revisions. We must explore deeper to both constrain and inspire this needed new physics. In the realm of the solar-system, we can effectively probe for small deviations from the predictions of general relativity: Technology now offers a wide range of opportunities to pursue experiments with accuracies orders of magnitude better than yet achieved. We describe both the relevant theoretical backgrounds and the opportunities for far more accurate solar system experiments.
We discuss the interior solutions of fluid Sphere in f(R,T) gravity admitting conformal killing vectors, where R is Ricci scalar and T is trace of energy momentum tensor. The solutions corresponding to isotropic and anisotropic configurations have been investigated explicitly. Further, the anisotropic case has been dealt by the utilization of linear equation of state. The results for both cases have been interpreted graphically. The equation of state parameter, integration constants and other parameters of the theory have been chosen to find the central density equal to standard value of central density of the compact objects. The energy conditions as well as stability of the solutions have been investigated in the background of f(R,T) gravity.
We investigate equations of motion and future singularities of $f(R,T)$ gravity where $R$ is the Ricci scalar and $T$ is the trace of stress-energy tensor. Future singularities for two kinds of equation of state (barotropic perfect fluid and generalized form of equation of state) are studied. While no future singularity is found for the first case, some kind of singularity is found to be possible for the second. We also investigate $f(R,T)$ gravity by the method of dynamical systems and obtain some fixed points. Finally, the effect of the Noether symmetry on $f(R,T)$ is studied and the consistent form of $f(R,T)$ function is found using the symmetry and the conserved charge.