No Arabic abstract
In this work, a correspondence between black hole solutions of conformal and massive theories of gravity is found. It is seen that this correspondence imposes some constraints on parameters of these theories. What is more, a relation between the mass of black holes and the parameters of massive gravity is found. Indeed, the acceptable ranges of massive gravity parameters ($c_{1}$ and $c_{2}$) are found. It is shown that by considering the positive mass of black holes, some ranges of $c_{1}$ and $c_{2}$ are acceptable.
We consider the equivalence of quasinormal modes and geodesic quantities recently brought back due to the black hole shadow observation by Event Horizon Telescope. Using WKB method we found an analytical relation between the real part of quasinormal frequencies at the eikonal limit and black hole shadow radius. We verify this correspondence with two black hole families in $4$ and $D$ dimensions, respectively.
We present, in an explicit form, the metric for all spherically symmetric Schwarzschild-Bach black holes in Einstein-Weyl theory. In addition to the black hole mass, this complete family of spacetimes involves a parameter that encodes the value of the Bach tensor on the horizon. When this additional non-Schwarzschild parameter is set to zero the Bach tensor vanishes everywhere and the Schwa-Bach solution reduces to the standard Schwarzschild metric of general relativity. Compared with previous studies, which were mainly based on numerical integration of a complicated form of field equations, the new form of the metric enables us to easily investigate geometrical and physical properties of these black holes, such as specific tidal effects on test particles, caused by the presence of the Bach tensor, as well as fundamental thermodynamical quantities.
We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with a cosmological constant. Thus, the solutions in this class include all the spherically symmetric solutions in general relativity, such as the Friedmann-Lema^{i}tre-Robertson-Walker solution and the Schwarzschild (-de Sitter) solution, though the one-parameter family of two parameters of the theory admits such a class of solutions. We find that the equations of motion for the perturbations of this class of solutions also reduce to the perturbed Einstein equations at first and second order. Therefore, the stability of the solutions coincides with that of the corresponding solutions in general relativity. In particular, these solutions do not suffer from non-linear instabilities which often appear in the other cosmological solutions in massive gravity and bi-gravity.
We present a detailed study of the static spherically symmetric solutions in de Rham-Gabadadze-Tolley (dRGT) theory. Since the diffeomorphism invariance can be restored by introducing the St{u}ckelberg fields $phi^a$, there is new invariant $I^{ab}=g^{mu u}partial_{mu}phi^apartial_ uphi^b$ in the massive gravity, which adds to the ones usually encountered in general relativity (GR). In the unitary gauge $phi^a=x^mudelta_mu^a$, any inverse metric $g^{mu u}$ that has divergence including the coordinate singularity in GR would exhibit a singularity in the invariant $I^{ab}$. Therefore, there is no conventional Schwarzschild metric if we choose unitary gauge. In this paper, we obtain a self-consistent static spherically symmetric ansatz in the nonunitary gauge. Under this ansatz, we find that there are seven solutions including the Schwarzschild solution, Reissner-Nordstr{o}m solution and five other solutions. These solutions may possess an event horizon depending upon the physical parameters (Schwarzschild radius $r_s$, scalar charge $S$ and/or electric charge $Q$). If these solutions possess an event horizon, we show that the singularity of $I^{ab}$ is absent at the horizon. Therefore, these solutions may become candidates for black holes in dRGT.
Four-dimensional black hole solutions generated by the low energy string effective action are investigated outside and inside the event horizon. A restriction for a minimal black hole size is obtained in the frame of the model discussed. Intersections, turning points and other singular points of the solution are investigated. It is shown that the position and the behavior of these particular points are definded by various kinds of zeros of the main system determinant. Some new aspects of the $r_s$ singularity are discussed.