No Arabic abstract
For a closed manifold equipped with a Riemannian metric, a triangulation, a representation of its fundamental group on an Hilbert module of finite type (over of finite von Neumann algebra), and a Hermitian structure on the flat bundle associated to the representation, one defines a numerical invariant, the relative torsion. The relative torsion is a positive real number and unlike the analytic torsion or the Reidemeister torsion, which are defined only when the pair manifold- representation is of determinant class, is always defined. When the pair is of determinant class the relative torsionis equal to the quotient of the analytic and the Reidemeister torsion.We calculate the relative torsion.
In this paper we determine the torsion free rank of the group of endotrivial modules for any finite group of Lie type, in both defining and non-defining characteristic. On our way to proving this, we classify the maximal rank $2$ elementary abelian $ell$-subgroups in any finite group of Lie type, for any prime $ell$, which may be of independent interest.
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. Let $Z_2(M)$ be the second singular submodule of $M$. In this paper, we define Goldie Rickart modules by utilizing the endomorphisms of a module. The module $M$ is called Goldie Rickart if for any $fin S$, $f^{-1}(Z_2(M))$ is a direct summand of $M$. We provide several characterizations of Goldie Rickart modules and study their properties. Also we present that semisimple rings and right $Sigma$-$t$-extending rings admit some characterizations in terms of Goldie Rickart modules.
We introduce and study a category $text{Fin}$ of modules of the Borel subalgebra of a quantum affine algebra $U_qmathfrak{g}$, where the commutative algebra of Drinfeld generators $h_{i,r}$, corresponding to Cartan currents, has finitely many characteristic values. This category is a natural extension of the category of finite-dimensional $U_qmathfrak{g}$ modules. In particular, we classify the irreducible objects, discuss their properties, and describe the combinatorics of the q-characters. We study transfer matrices corresponding to modules in $text{Fin}$. Among them we find the Baxter $Q_i$ operators and $T_i$ operators satisfying relations of the form $T_iQ_i=prod_j Q_j+ prod_k Q_k$. We show that these operators are polynomials of the spectral parameter after a suitable normalization. This allows us to prove the Bethe ansatz equations for the zeroes of the eigenvalues of the $Q_i$ operators acting in an arbitrary finite-dimensional representation of $U_qmathfrak{g}$.
We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over $C^*$-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert $C^*$-modules which have a natural left action from another $C^*$-algebra say, $mathcal A$. The coherent states are well defined in this case and they behave well with respect to the left action by $mathcal A$. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive kernel between two $C^*$-algebras, in complete analogy to the Hilbert space situation. Related to this there is a dilation result for positive operator valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory.
In this presentation we shall deal with some aspects of the theory of Hilbert functions of modules over local rings, and we intend to guide the reader along one of the possible routes through the last three decades of progress in this area of dynamic mathematical activity. Motivated by the ever increasing interest in this field, our goal is to gather together many new developments of this theory into one place, and to present them using a unifying approach which gives self-contained and easier proofs. In this text we shall discuss many results by different authors, following essentially the direction typified by the pioneering work of J. Sally. Our personal view of the subject is most visibly expressed by the presentation of Chapters 1 and 2 in which we discuss the use of the superficial elements and related devices. Basic techniques will be stressed with the aim of reproving recent results by using a more elementary approach. Over the past few years several papers have appeared which extend classical results on the theory of Hilbert functions to the case of filtered modules. The extension of the theory to the case of general filtrations on a module has one more important motivation. Namely, we have interesting applications to the study of graded algebras which are not associated to a filtration, in particular the Fiber cone and the Sally-module. We show here that each of these algebras fits into certain short exact sequences, together with algebras associated to filtrations. Hence one can study the Hilbert function and the depth of these algebras with the aid of the know-how we got in the case of a filtration.