Do you want to publish a course? Click here

Coherent States on Hilbert Modules

129   0   0.0 ( 0 )
 Added by S. Twareque Ali
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over $C^*$-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert $C^*$-modules which have a natural left action from another $C^*$-algebra say, $mathcal A$. The coherent states are well defined in this case and they behave well with respect to the left action by $mathcal A$. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive kernel between two $C^*$-algebras, in complete analogy to the Hilbert space situation. Related to this there is a dilation result for positive operator valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory.



rate research

Read More

We consider the quantum dynamics of a charged particle evolving under the action of a constant homogeneous magnetic field, with emphasis on the discrete subgroups of the Heisenberg group (in the Euclidean case) and of the SL(2, R) group (in the Hyperbolic case). We investigate completeness properties of discrete coherent states associated with higher order Euclidean and hyperbolic Landau levels, partially extending classic results of Perelomov and of Bargmann, Butera, Girardello and Klauder. In the Euclidean case, our results follow from identifying the completeness problem with known results from the theory of Gabor frames. The results for the hyperbolic setting follow by using a combination of methods from coherent states, time-scale analysis and the theory of Fuchsian groups and their associated automorphic forms.
We describe coherent states and associated generalized Grassmann variables for a system of $m$ independent $q$-boson modes. A resolution of unity in terms of generalized Berezin integrals leads to generalized Grassmann symbolic calculus. Formulae for operator traces are given and the thermodynamic partition function for a system of $q$-boson oscillators is discussed.
We consider discrete spectra of bound states for non-relativistic motion in attractive potentials V_{sigma}(x) = -|V_{0}| |x|^{-sigma}, 0 < sigma leq 2. For these potentials the quasiclassical approximation for n -> infty predicts quantized energy levels e_{sigma}(n) of a bounded spectrum varying as e_{sigma}(n) ~ -n^{-2sigma/(2-sigma)}. We construct collective quantum states using the set of wavefunctions of the discrete spectrum taking into account this asymptotic behaviour. We give examples of states that are normalizable and satisfy the resolution of unity, using explicit positive functions. These are coherent states in the sense of Klauder and their completeness is achieved via exact solutions of Hausdorff moment problems, obtained by combining Laplace and Mellin transform methods. For sigma in the range 0<sigmaleq 2/3 we present exact implementations of such states for the parametrization sigma = 2(k-l)/(3k-l), with k and l positive integers satisfying k>l.
60 - Brian C. Hall 2017
The first two parts of this article surveys results related to the heat-kernel coherent states for a compact Lie group K. I begin by reviewing the definition of the coherent states, their resolution of the identity, and the associated Segal-Bargmann transform. I then describe related results including connections to geometric quantization and (1+1)-dimensional Yang--Mills theory, the associated coherent states on spheres, and applications to quantum gravity. The third part of this article summarizes recent work of mine with Driver and Kemp on the large-N limit of the Segal--Bargmann transform for the unitary group U(N). A key result is the identification of the leading-order large-N behavior of the Laplacian on trace polynomials.
Coherent states in a projected Hilbert space have many useful properties. When there are conserved quantities, a representation of the entire Hilbert space is not necessary. The same issue arises when conditional observations are made with post-selected measurement results. In these cases, only a part of the Hilbert space needs to be represented, and one can define this restriction by way of a projection operator. Here coherent state bases and normally-ordered phase-space representations are introduced for treating such projected Hilbert spaces, including existence theorems and dynamical equations. These techniques are very useful in studying novel optical or microwave integrated photonic quantum technologies, such as boson sampling or Josephson quantum computers. In these cases states become strongly restricted due to inputs, nonlinearities or conditional measurements. This paper focuses on coherent phase states, which have especially simple properties. Practical applications are reported on calculating recurrences in anharmonic oscillators, the effects of arbitrary phase-noise on Schrodinger cat fringe visibility, and on boson sampling interferometry for large numbers of modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا