Do you want to publish a course? Click here

Space Program Language (SPL/SQL) for the Relational Approach of the Spatial Databases

113   0   0.0 ( 0 )
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

In this project we are presenting a grammar which unify the design and development of spatial databases. In order to make it, we combine nominal and spatial information, the former is represented by the relational model and latter by a modification of the same model. The modification lets to represent spatial data structures (as Quadtrees, Octrees, etc.) in a integrated way. This grammar is important because with it we can create tools to build systems that combine spatial-nominal characteristics such as Geographical Information Systems (GIS), Hypermedia Systems, Computed Aided Design Systems (CAD), and so on



rate research

Read More

We propose the client-side AES256 encryption for a cloud SQL DB. A column ciphertext is deterministic or probabilistic. We trust the cloud DBMS for security of its run-time values, e.g., through a moving target defense. The client may send AES key(s) with the query. These serve the on-the-fly decryption of selected ciphertext into plaintext for query evaluation. The DBMS clears the key(s) and the plaintext at the query end at latest. It may deliver ciphertext to decryption enabled clients or plaintext otherwise, e.g., to browsers/navigators. The scheme functionally offers to a cloud DBMS capabilities of a plaintext SQL DBMS. AES processing overhead appears negligible for a modern CPU, e.g., a popular Intel I5. The determin-istic encryption may have no storage overhead. The probabilistic one doubles the DB storage. The scheme seems the first generally practical for an outsourced encrypted SQL DB. An implementation sufficient to practice with appears easy. An existing cloud SQL DBMS with UDF support should do.
HRDBMS is a novel distributed relational database that uses a hybrid model combining the best of traditional distributed relational databases and Big Data analytics platforms such as Hive. This allows HRDBMS to leverage years worth of research regarding query optimization, while also taking advantage of the scalability of Big Data platforms. The system uses an execution framework that is tailored for relational processing, thus addressing some of the performance challenges of running SQL on top of platforms such as MapReduce and Spark. These include excessive materialization of intermediate results, lack of a global cost-based optimization, unnecessary sorting, lack of index support, no statistics, no support for DML and ACID, and excessive communication caused by the rigid communication patterns enforced by these platforms.
Variability inherently exists in databases in various contexts which creates database variants. For example, variants of a database could have different schemas/content (database evolution problem), variants of a database could root from different sources (data integration problem), variants of a database could be deployed differently for specific application domain (deploying a database for different configurations of a software system), etc. Unfortunately, while there are specific solutions to each of the problems arising in these contexts, there is no general solution that accounts for variability in databases and addresses managing variability within a database. In this paper, we formally define variational databases (VDBs) and statically-typed variational relational algebra (VRA) to query VDBs---both database and queries explicitly account for variation. We also design and implement variational database management system (VDBMS) to run variational queries over a VDB effectively and efficiently. To assess this, we generate two VDBs from real-world databases in the context of software development and database evolution with a set of experimental queries for each.
Data analysis often involves comparing subsets of data across many dimensions for finding unusual trends and patterns. While the comparison between subsets of data can be expressed using SQL, they tend to be complex to write, and suffer from poor performance over large and high-dimensional datasets. In this paper, we propose a new logical operator COMPARE for relational databases that concisely captures the enumeration and comparison between subsets of data and greatly simplifies the expressing of a large class of comparative queries. We extend the database engine with optimization techniques that exploit the semantics of COMPARE to significantly improve the performance of such queries. We have implemented these extensions inside Microsoft SQL Server, a commercial DBMS engine. Our extensive evaluation on synthetic and real-world datasets shows that COMPARE results in a significant speedup over existing approaches, including physical plans generated by todays database systems, user-defined function (UDF), as well as middleware solutions that compare subsets outside the databases.
We study here the impact of priorities on conflict resolution in inconsistent relational databases. We extend the framework of repairs and consistent query answers. We propose a set of postulates that an extended framework should satisfy and consider two instantiations of the framework: (locally preferred) l-repairs and (globally preferred) g-repairs. We study the relationships between them and the impact each notion of repair has on the computational complexity of repair checking and consistent query answers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا