Do you want to publish a course? Click here

HRDBMS: Combining the Best of Modern and Traditional Relational Databases

135   0   0.0 ( 0 )
 Added by Boris Glavic
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

HRDBMS is a novel distributed relational database that uses a hybrid model combining the best of traditional distributed relational databases and Big Data analytics platforms such as Hive. This allows HRDBMS to leverage years worth of research regarding query optimization, while also taking advantage of the scalability of Big Data platforms. The system uses an execution framework that is tailored for relational processing, thus addressing some of the performance challenges of running SQL on top of platforms such as MapReduce and Spark. These include excessive materialization of intermediate results, lack of a global cost-based optimization, unnecessary sorting, lack of index support, no statistics, no support for DML and ACID, and excessive communication caused by the rigid communication patterns enforced by these platforms.



rate research

Read More

Variability inherently exists in databases in various contexts which creates database variants. For example, variants of a database could have different schemas/content (database evolution problem), variants of a database could root from different sources (data integration problem), variants of a database could be deployed differently for specific application domain (deploying a database for different configurations of a software system), etc. Unfortunately, while there are specific solutions to each of the problems arising in these contexts, there is no general solution that accounts for variability in databases and addresses managing variability within a database. In this paper, we formally define variational databases (VDBs) and statically-typed variational relational algebra (VRA) to query VDBs---both database and queries explicitly account for variation. We also design and implement variational database management system (VDBMS) to run variational queries over a VDB effectively and efficiently. To assess this, we generate two VDBs from real-world databases in the context of software development and database evolution with a set of experimental queries for each.
A consistent query answer in an inconsistent database is an answer obtained in every (minimal) repair. The repairs are obtained by resolving all conflicts in all possible ways. Often, however, the user is able to provide a preference on how conflicts should be resolved. We investigate here the framework of preferred consistent query answers, in which user preferences are used to narrow down the set of repairs to a set of preferred repairs. We axiomatize desirable properties of preferred repairs. We present three different families of preferred repairs and study their mutual relationships. Finally, we investigate the complexity of preferred repairing and computing preferred consistent query answers.
We study here the impact of priorities on conflict resolution in inconsistent relational databases. We extend the framework of repairs and consistent query answers. We propose a set of postulates that an extended framework should satisfy and consider two instantiations of the framework: (locally preferred) l-repairs and (globally preferred) g-repairs. We study the relationships between them and the impact each notion of repair has on the computational complexity of repair checking and consistent query answers.
In this project we are presenting a grammar which unify the design and development of spatial databases. In order to make it, we combine nominal and spatial information, the former is represented by the relational model and latter by a modification of the same model. The modification lets to represent spatial data structures (as Quadtrees, Octrees, etc.) in a integrated way. This grammar is important because with it we can create tools to build systems that combine spatial-nominal characteristics such as Geographical Information Systems (GIS), Hypermedia Systems, Computed Aided Design Systems (CAD), and so on
We develop a query answering system, where at the core of the work there is an idea of query answering by rewriting. For this purpose we extend the DL DL-Lite with the ability to support n-ary relations, obtaining the DL DLR-Lite, which is still polynomial in the size of the data. We devise a flexible way of mapping the conceptual level to the relational level, which provides the users an SQL-like query language over the conceptual schema. The rewriting technique adds value to conventional query answering techniques, allowing to formulate simpler queries, with the ability to infer additional information that was not stated explicitly in the user query. The formalization of the conceptual schema and the developed reasoning technique allow checking for consistency between the database and the conceptual schema, thus improving the trustiness of the information system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا