No Arabic abstract
Data analysis often involves comparing subsets of data across many dimensions for finding unusual trends and patterns. While the comparison between subsets of data can be expressed using SQL, they tend to be complex to write, and suffer from poor performance over large and high-dimensional datasets. In this paper, we propose a new logical operator COMPARE for relational databases that concisely captures the enumeration and comparison between subsets of data and greatly simplifies the expressing of a large class of comparative queries. We extend the database engine with optimization techniques that exploit the semantics of COMPARE to significantly improve the performance of such queries. We have implemented these extensions inside Microsoft SQL Server, a commercial DBMS engine. Our extensive evaluation on synthetic and real-world datasets shows that COMPARE results in a significant speedup over existing approaches, including physical plans generated by todays database systems, user-defined function (UDF), as well as middleware solutions that compare subsets outside the databases.
Variability inherently exists in databases in various contexts which creates database variants. For example, variants of a database could have different schemas/content (database evolution problem), variants of a database could root from different sources (data integration problem), variants of a database could be deployed differently for specific application domain (deploying a database for different configurations of a software system), etc. Unfortunately, while there are specific solutions to each of the problems arising in these contexts, there is no general solution that accounts for variability in databases and addresses managing variability within a database. In this paper, we formally define variational databases (VDBs) and statically-typed variational relational algebra (VRA) to query VDBs---both database and queries explicitly account for variation. We also design and implement variational database management system (VDBMS) to run variational queries over a VDB effectively and efficiently. To assess this, we generate two VDBs from real-world databases in the context of software development and database evolution with a set of experimental queries for each.
We study here the impact of priorities on conflict resolution in inconsistent relational databases. We extend the framework of repairs and consistent query answers. We propose a set of postulates that an extended framework should satisfy and consider two instantiations of the framework: (locally preferred) l-repairs and (globally preferred) g-repairs. We study the relationships between them and the impact each notion of repair has on the computational complexity of repair checking and consistent query answers.
A consistent query answer in an inconsistent database is an answer obtained in every (minimal) repair. The repairs are obtained by resolving all conflicts in all possible ways. Often, however, the user is able to provide a preference on how conflicts should be resolved. We investigate here the framework of preferred consistent query answers, in which user preferences are used to narrow down the set of repairs to a set of preferred repairs. We axiomatize desirable properties of preferred repairs. We present three different families of preferred repairs and study their mutual relationships. Finally, we investigate the complexity of preferred repairing and computing preferred consistent query answers.
HRDBMS is a novel distributed relational database that uses a hybrid model combining the best of traditional distributed relational databases and Big Data analytics platforms such as Hive. This allows HRDBMS to leverage years worth of research regarding query optimization, while also taking advantage of the scalability of Big Data platforms. The system uses an execution framework that is tailored for relational processing, thus addressing some of the performance challenges of running SQL on top of platforms such as MapReduce and Spark. These include excessive materialization of intermediate results, lack of a global cost-based optimization, unnecessary sorting, lack of index support, no statistics, no support for DML and ACID, and excessive communication caused by the rigid communication patterns enforced by these platforms.
In this project we are presenting a grammar which unify the design and development of spatial databases. In order to make it, we combine nominal and spatial information, the former is represented by the relational model and latter by a modification of the same model. The modification lets to represent spatial data structures (as Quadtrees, Octrees, etc.) in a integrated way. This grammar is important because with it we can create tools to build systems that combine spatial-nominal characteristics such as Geographical Information Systems (GIS), Hypermedia Systems, Computed Aided Design Systems (CAD), and so on