Do you want to publish a course? Click here

Far infrared study of the two dimensional dimer spin system SrCu_2(BO_3)_2

64   0   0.0 ( 0 )
 Added by Toomas Room
 Publication date 1999
  fields Physics
and research's language is English
 Authors T. Room




Ask ChatGPT about the research

Using far-infrared spectroscopy in magnetic fields up to 12T we have studied a two-dimensional dimer spin gap system SrCu_2(BO_3)_2. We found several infrared active modes in the dimerized state (below 10K) in the frequency range from 3 to 100cm^-1. The measured splitting from the ground state to the excited triplet M_S=0 sublevel is Delta_1=24.2cm^-1 and the other two triplet state sublevels in zero magnetic field are 1.4cm^-1 below and above the M_S=0 sublevel. Another multiplet is at Delta_2=37.6cm^-1 from the ground state. A strong electric dipole active transition polarized in the (ab)-plane is activated in the dimer spin system below 15K at 52cm^-1.

rate research

Read More

264 - G. T. Liu , J. L. Luo , T. Xiang 2004
A series of compounds M$_{0.1}$Sr$_{0.9}$Cu$_2$(BO$_3$)$_2$ with Sr substituted by M=Al, La, Na and Y were prepared by solid state reaction. XRD analysis showed that these doping compounds are isostructural to SrCu$_2$(BO$_3$)$_2$. The magnetic susceptibility from 1.9K to 300K in an applied magnetic field of 1.0T and the specific heat from 1.9K to 25K in applied fields up to 14T were measured. The spin gap is deduced from the low temperature susceptibility as well as the specific heat. It is found that the spin gap is strongly suppressed by magnetic fields. No superconductivity is observed in all four samples.
We perform a low temperature Raman scattering study of phononic and collective spin excitations in the orthogonal dimers compound SrCu_2(BO_3)_2, focussing on the symmetry and the effects of external fields on the magnetic modes. The zero field symmetry and the behavior in magnetic fields of the elementary and bound magnetic triplet states are experimentally determined. We find that a minimal 4-spin cluster forming the unit cell is able to describe the symmetry as well as the anisotropic dispersions in external fields of the spin gap multiplet branches around 24 cm^{-1}. We identify two Raman coupling mechanisms responsible for the distinct resonance behavior of these magnetic modes and we show that one of these can be ascribed to an effective intra-dimer Dzyaloshinskii-Moriya spin interaction. Our data also suggest a possible explanation for the existence of a strongly bound two-triplet state in the singlet sector which has an energy below the spin gap. The low temperature phononic spectra suggest strong spin-phonon coupling and show intriguing quasi-degeneracy of modes in the context of the present crystal structure determination.
We report the results of the angular-dependent magnetoresistance oscillations (AMROs), which can determine the shape of bulk Fermi surfaces in quasi-two-dimensional (Q2D) systems, in a highly hole-doped Fe-based superconductor KFe$_2$As$_2$ with $T_c approx$ 3.7 K. From the AMROs, we determined the two Q2D FSs with rounded-square cross sections, corresponding to 12% and 17% of the first Brillouin zone. The rounded-squared shape of the FS cross section is also confirmed by the analyses of the interlayer transport under in-plane fields. From the obtained FS shape, we infer the character of the 3d orbitals that contribute to the FSs.
Inelastic neutron scattering was used to study a quantum S=1/2 antiferromagnetic Heisenberg system-Bis(2-amino-5-fluoropyridinium) Tetrachlorocuprate(II). The magnetic excitation spectrum was shown to be dominated by long-lived excitations with an energy gap as 1.07(3) meV. The measured dispersion relation is consistent with a simple two-dimensional square lattice of weakly-coupled spin dimers. Comparing the data to a random phase approximation treatment of this model gives the intra-dimer and inter-dimer exchange constants J=1.45(2) meV and J=0.31(3) meV, respectively.
By means of resonant inelastic x-ray scattering at the Cu L$_3$ edge, we measured the spin wave dispersion along $langle$100$rangle$ and $langle$110$rangle$ in the undoped cuprate Ca$_2$CuO$_2$Cl$_2$. The data yields a reliable estimate of the superexchange parameter $J$ = 135 $pm$ 4 meV using a classical spin-1/2 2D Heisenberg model with nearest-neighbor interactions and including quantum fluctuations. Including further exchange interactions increases the estimate to $J$ = 141 meV. The 40 meV dispersion between the magnetic Brillouin zone boundary points (1/2,,0) and (1/4,,1/4) indicates that next-nearest neighbor interactions in this compound are intermediate between the values found in La$_{2}$CuO$_4$ and Sr$_2$CuO$_2$Cl$_2$. Owing to the low-$Z$ elements composing Ca$_2$CuO$_2$Cl$_2$, the present results may enable a reliable comparison with the predictions of quantum many-body calculations, which would improve our understanding of the role of magnetic excitations and of electronic correlations in cuprates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا