We perform a low temperature Raman scattering study of phononic and collective spin excitations in the orthogonal dimers compound SrCu_2(BO_3)_2, focussing on the symmetry and the effects of external fields on the magnetic modes. The zero field symmetry and the behavior in magnetic fields of the elementary and bound magnetic triplet states are experimentally determined. We find that a minimal 4-spin cluster forming the unit cell is able to describe the symmetry as well as the anisotropic dispersions in external fields of the spin gap multiplet branches around 24 cm^{-1}. We identify two Raman coupling mechanisms responsible for the distinct resonance behavior of these magnetic modes and we show that one of these can be ascribed to an effective intra-dimer Dzyaloshinskii-Moriya spin interaction. Our data also suggest a possible explanation for the existence of a strongly bound two-triplet state in the singlet sector which has an energy below the spin gap. The low temperature phononic spectra suggest strong spin-phonon coupling and show intriguing quasi-degeneracy of modes in the context of the present crystal structure determination.
A series of compounds M$_{0.1}$Sr$_{0.9}$Cu$_2$(BO$_3$)$_2$ with Sr substituted by M=Al, La, Na and Y were prepared by solid state reaction. XRD analysis showed that these doping compounds are isostructural to SrCu$_2$(BO$_3$)$_2$. The magnetic susceptibility from 1.9K to 300K in an applied magnetic field of 1.0T and the specific heat from 1.9K to 25K in applied fields up to 14T were measured. The spin gap is deduced from the low temperature susceptibility as well as the specific heat. It is found that the spin gap is strongly suppressed by magnetic fields. No superconductivity is observed in all four samples.
Using far-infrared spectroscopy in magnetic fields up to 12T we have studied a two-dimensional dimer spin gap system SrCu_2(BO_3)_2. We found several infrared active modes in the dimerized state (below 10K) in the frequency range from 3 to 100cm^-1. The measured splitting from the ground state to the excited triplet M_S=0 sublevel is Delta_1=24.2cm^-1 and the other two triplet state sublevels in zero magnetic field are 1.4cm^-1 below and above the M_S=0 sublevel. Another multiplet is at Delta_2=37.6cm^-1 from the ground state. A strong electric dipole active transition polarized in the (ab)-plane is activated in the dimer spin system below 15K at 52cm^-1.
Electron-phonon-driven charge density waves can in some circumstances allow electronic correlations to become predominant, driving a system into a Mott insulating state. New insights into both the Mott state and preceding charge density wave may result from observations of the coupled dynamics of their underlying degrees of freedom. Here, tunneling injection of single electrons into the upper Hubbard band of the Mott charge-density-wave material 1T-TaS2 reveals extraordinarily narrow electronic excitations which couple to amplitude mode phonons associated with the charge density waves periodic lattice distortion. This gives a vivid microscopic view of the interplay between excitations of the Mott state and the lattice dynamics of its charge density wave precursor.
Using Raman spectroscopy, we investigate the lattice phonons, magnetic excitations, and magneto-elastic coupling in the distorted triangular-lattice Heisenberg antiferromagnet alpha-SrCr2O4, which develops helical magnetic order below 43 K. Temperature dependent phonon spectra are compared to predictions from density functional theory calculations which allows us to assign the observed modes and identify weak effects arising from coupled lattice and magnetic degrees of freedom. Raman scattering associated with two-magnon excitations is observed at 20 meV and 40 meV. These energies are in general agreement with our ab-initio calculations of exchange interactions and earlier theoretical predictions of the two-magnon Raman response of triangular-lattice antiferromagnets. The temperature dependence of the two-magnon excitations indicates that spin correlations persist well above the Neel temperature.
We investigated the magnetic structure and dynamics of YbMnBi$_2$, with elastic and inelastic neutron scattering, to shed light on the topological nature of the charge carriers in the antiferromagnetic phase. We confirm C-type antiferromagnetic ordering of the Mn spins below $T_{rm N} = 290$ K, and determine that the spins point along the $c$-axis to within about $3^circ$. The observed magnon spectrum can be described very well by the same effective spin Hamiltonian as was used previously to model the magnon spectrum of CaMnBi$_2$. Our results show conclusively that the creation of Weyl nodes in YbMnBi$_2$ by the time-reversal-symmetry breaking mechanism can be excluded in the bulk.
A. Gozar
,B.S. Dennis
,H. Kageyama
.
(2005)
.
"Symmetry and light coupling to phononic and collective magnetic excitations in SrCu_2(BO_3)_2"
.
Adrian Gozar
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا