Do you want to publish a course? Click here

Dynamics of the two-dimensional S=1/2 dimer system (C5H6N2F)2CuCl4

119   0   0.0 ( 0 )
 Added by Tao Hong
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inelastic neutron scattering was used to study a quantum S=1/2 antiferromagnetic Heisenberg system-Bis(2-amino-5-fluoropyridinium) Tetrachlorocuprate(II). The magnetic excitation spectrum was shown to be dominated by long-lived excitations with an energy gap as 1.07(3) meV. The measured dispersion relation is consistent with a simple two-dimensional square lattice of weakly-coupled spin dimers. Comparing the data to a random phase approximation treatment of this model gives the intra-dimer and inter-dimer exchange constants J=1.45(2) meV and J=0.31(3) meV, respectively.



rate research

Read More

The magnetic properties of Na2CuP2O7 were investigated by means of 31P nuclear magnetic resonance (NMR), magnetic susceptibility, and heat capacity measurements. We report the 31P NMR shift, the spin-lattice 1/T1, and spin-spin 1/T2 relaxation-rate data as a function of temperature T. The temperature dependence of the NMR shift K(T) is well described by the S=1/2 square lattice Heisenberg antiferromagnetic (HAF) model with an intraplanar exchange of J/k_B simeq 18pm2 K and a hyperfine coupling A = (3533pm185) Oe/mu_B. The 31P NMR spectrum was found to broaden abruptly below T sim 10 K signifying some kind of transition. However, no anomaly was noticed in the bulk susceptibility data down to 1.8 K. The heat capacity appears to have a weak maximum around 10 K. With decrease in temperatures, the spin-lattice relaxation rate 1/T1 decreases monotonically and appears to agree well with the high temperature series expansion expression for a S = 1/2 2D square lattice.
CuSiO_3, isotypic to the spin - Peierls compound CuGeO_3, was discovered recently as a metastable decomposition product of the silicate mineral dioptase, Cu_6Si_6O_{18}cdot6H_2O. We investigated the physical properties of CuSiO_3 using susceptibility, magnetization and specific heat measurements on powder samples. The magnetic susceptibility chi(T) is reproduced very well above T = 8 K by theoretical calculations for an S=1/2 antiferromagnetic Heisenberg linear chain without frustration (alpha = 0) and a nearest - neighbor exchange coupling constant of J/k_{B} = 21 K, much weaker than in CuGeO_3. Below 8 K the susceptibility exhibits a substantial drop. This feature is identified as a second - order phase transition at T_{0} = 7.9 K by specific heat measurements. The influence of magnetic fields on T_{0} is weak, and ac - magnetization measurements give strong evidence for a spin - flop - phase at mu_0H_{SF} ~ 3 T. The origin of the magnetic phase transition at T_{0} = 7.9 K is discussed in the context of long - range antiferromagnetic order (AF) versus spin - Peierls(SP)order. Susceptibility and specific heat results support the AF ordered ground state. Additional temperature dependent ^{63,65}Cu nuclear quadrupole resonance experiments have been carried out to probe the Cu^{2+} electronic state and the spin dynamics in CuSiO_3.
Long range antiferromagnetic (AFM) ordering of Ni spins in Ni2NbBO6 has been studied with single crystal from spin susceptibility measurement and comparedwith the ab initio calculation results consistently. Below TN = 23.5 K, the S = 1 spins align along the a direction for edge-shared NiO6 octahedra which form crystallographic armchair chains along the b direction. The isothermal magnetization M(H) below TN shows spin-flop transition for magnetic field above 36 kOe along the a axis,which indicates the spin anisotropy is along the a direction. The electronic and magnetic structures of Ni2NbBO6 have also been explored theoretically using density functional theory with generalized gradient approximation plus on-site Coulomb interaction (U). These calculations support the experimentally observed antiferromagnetism of Ni2NbBO6. In particular, the long range AFM ordering below TN can be dissected into armchair chains which consists of S = 1 dimers of J2 = 2.43 meV with ferromagnetic (FM) intrachain and interchain couplings of size half |J2|.
We study dynamical properties of the anisotropic triangular quantum antiferromagnet Cs_2CuCl_4. Inelastic neutron scattering measurements have established that the dynamical spin correlations cannot be understood within a linear spin wave analysis. We go beyond linear spin wave theory by taking interactions between magnons into account in a 1/S expansion. We determine the dynamical structure factor and carry out extensive comparisons with experimental data. We find that compared to linear spin wave theory a significant fraction of the scattering intensity is shifted to higher energies and strong scattering continua are present. However, the 1/S expansion fails to account for the experimentally observed large quantum renormalization of the exchange energies.
63 - T. Room 1999
Using far-infrared spectroscopy in magnetic fields up to 12T we have studied a two-dimensional dimer spin gap system SrCu_2(BO_3)_2. We found several infrared active modes in the dimerized state (below 10K) in the frequency range from 3 to 100cm^-1. The measured splitting from the ground state to the excited triplet M_S=0 sublevel is Delta_1=24.2cm^-1 and the other two triplet state sublevels in zero magnetic field are 1.4cm^-1 below and above the M_S=0 sublevel. Another multiplet is at Delta_2=37.6cm^-1 from the ground state. A strong electric dipole active transition polarized in the (ab)-plane is activated in the dimer spin system below 15K at 52cm^-1.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا