We present a detailed analysis of light scattering experiments performed on the quarter-filled spin ladder compound $alpha^prime$-NaV$_{2}$O$_{5}$ for the temperature range 5 K$le$T$le$300 K. This system undergoes a phase transition into a singlet ground state at T=34 K accompanied by the formation of a super structure. For T$leq$34 K several new modes were detected. Three of these modes are identified as magnetic bound states. Experimental evidence for charge ordering on the V sites is detected as an anomalous shift and splitting of a V-O vibration at 422 cm$^{-1}$ for temperatures above 34 K. The smooth and crossover-like onset of this ordering at T$_{rm CO}$= 80 K is accompanied by pretransitional fluctuations both in magnetic and phononic Raman scattering. It resembles the effect of stripe order on the super structure intensities in La$_2$NiO$_{4+delta}$.
We have analyzed the experimental evidence of charge and orbital ordering in La0.5Sr1.5MnO4 using first principles band structure calculations. Our results suggest the presence of two types of Mn sites in the system. One of the Mn sites behaves like an Mn(3+) ion, favoring a Jahn-Teller distortion of the surrounding oxygen atoms, while the distortion around the other is not a simple breathing mode kind. Band structure effects are found to dominate the experimental spectrum for orbital and charge ordering, providing an alternate explanation for the experimentally observed results.
We present a detailed study on the charge ordering (CO) transition in GdBaCo2O5 system by combining high resolution synchrotron powder/single crystal diffraction with electron paramagnetic resonance (EPR) experiments as a function of temperature. We found a second order structural phase transition at TCO=247 K (Pmmm to Pmma) associated with the onset of long range CO. At Tmin = 1.2TCO, the EPR linewidth rapidly broadens providing evidence of spin fluctuations due to magnetic interactions between Gd3+ ions and antiferromagnetic couplings of Co2+/Co3+ sublattices. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5 sets in at TCO. Pair distribution function (PDF) analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T = 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of CO. This result is supported by the weakening of superstructure reflections and the temperature evolution of EPR linewidth that is consistent with paramagnetic (PM) reentrant behavior reported in the GdBaCo2O5.5 parent compound.
We argue that in the quarter-filled ladder compound NaV_2O_5 the quasi-one-dimensional spin system is strongly coupled to a low-energy antiferroelectric mode of the excitonic type. This mode results from the interplay between the electron hopping along the rungs of the vanadium two-leg ladders and the Coulomb repulsion between electrons. The charge ordering observed in sodium vanadate at T_c = 34K corresponds to the softening of the antiferroelectric mode. We consider the spin-isospin model, which describes the spin and low-energy charge degrees of freedom in sodium vanadate. Within this model we explain the observed anomalous temperature-dependence of the dielectric susceptibility at T_c and the midinfrared absorption continuum. We identify the broad structure in the low-energy optical absorption spectrum of NaV_2O_5 with the continuum formed by two spinons and one low-energy charge excitation.
Anomalous x-ray diffraction studies show that the charge ordering in $alpha^prime$-NaV$_2$O$_5$ is of zig-zag type in all vanadium ladders. We have found that there are two models of the stacking of layers along emph{c-}direction, each of them consisting of 2 degenerated patterns, and that the experimental data is well reproduced if the 2 patterns appears simultaneously. We believe that the low temperature structure contains stacking faults separating regions corresponding to the four possible patterns.
We have studied disorder-induced in-gap states and effect of light illumination in the insulating phase of spinel-type CuIr$_2$S$_4$ using ultra-violet photoemission spectroscopy (UPS). The Ir$^{3+}$/Ir$^{4+}$ charge-ordered gap appears below the metal-insulator transition temperature. However, in the insulating phase, in-gap spectral features with $softgap$ are observed in UPS just below the Fermi level ($E_F$), corresponding to the variable range hopping transport observed in resistivity. The spectral weight at $E_F$ is not increased by light illumination, indicating that the Ir$^{4+}$-Ir$^{4+}$ dimer is very robust although the long-range octamer order would be destructed by the photo-excitation. Present results suggest that the Ir$^{4+}$-Ir$^{4+}$ bipolaronic hopping and disorder effects are responsible for the conductivity of CuIr$_2$S$_4$.
M. Fischer
,P. Lemmens
,G. Els
.
(1999)
.
"Spin gap behavior and charge ordering in alpha^{prime}-NaV_2O_5 probed by light scattering"
.
Michael Fischer
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا