Do you want to publish a course? Click here

Charge ordering transition in GdBaCo2O5: evidence of reentrant behavior

132   0   0.0 ( 0 )
 Added by Mattia Allieta
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed study on the charge ordering (CO) transition in GdBaCo2O5 system by combining high resolution synchrotron powder/single crystal diffraction with electron paramagnetic resonance (EPR) experiments as a function of temperature. We found a second order structural phase transition at TCO=247 K (Pmmm to Pmma) associated with the onset of long range CO. At Tmin = 1.2TCO, the EPR linewidth rapidly broadens providing evidence of spin fluctuations due to magnetic interactions between Gd3+ ions and antiferromagnetic couplings of Co2+/Co3+ sublattices. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5 sets in at TCO. Pair distribution function (PDF) analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T = 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of CO. This result is supported by the weakening of superstructure reflections and the temperature evolution of EPR linewidth that is consistent with paramagnetic (PM) reentrant behavior reported in the GdBaCo2O5.5 parent compound.



rate research

Read More

We report here a detailed study of AC/DC magnetization and longitudinal/transverse transport properties of La$_{1.2}$Sr$_{1.8}$Mn$_{2}$O$_{7}$ single crystals below $T_{c}$ = 121 K. We find that the resistivity upturn below 40 K is related to the reentrant spin glass phase at the same temperature, accompanied by additional anomalous Hall effects. The carrier concentration from the ordinary Hall effects remains constant during the transition and is close to the nominal doping level (0.4 holes/Mn). The spin glass behavior comes from the competition between ferromagnetic double exchange and antiferromagnetic superexchange interactions, which leads to phase separation, i.e. a mixture of ferromagnetic and antiferromagnetic clusters, representing the canted antiferromagnetic state.
Metallic LiOsO$_3$ undergoes a continuous ferroelectric-like structural phase transition below $T_c$ = 140 K to realize a polar metal. To understand the microscopic interactions that drive this transition, we study its critical behavior above $T_c$ via electromechanical coupling - distortions of the lattice induced by short-range dipole-dipole correlations arising from Li off-center displacements. By mapping the full angular distribution of second harmonic electric-quadrupole radiation from LiOsO$_3$ and performing a simplified hyper-polarizable bond model analysis, we uncover subtle symmetry-preserving lattice distortions over a broad temperature range extending from $T_c$ up to around 230 K, characterized by non-uniform changes in the short and long Li-O bond lengths. Such an extended region of critical fluctuations may explain anomalous features reported in specific heat and Raman scattering data, and suggests the presence of competing interactions that are not accounted for in existing theoretical treatments. More broadly, our results showcase how electromechanical effects serve as a probe of critical behavior near inversion symmetry breaking transitions in metals.
High-resolution thermal expansion measurements have been performed for exploring the mysterious structureless transition in (TMTTF)$_{2}$X (X = PF$_{6}$ and AsF$_{6}$), where charge ordering at $T_{CO}$ coincides with the onset of ferroelectric order. Particularly distinct lattice effects are found at $T_{CO}$ in the uniaxial expansivity along the interstack $textbf{textit{c*}}$-direction. We propose a scheme involving a charge modulation along the TMTTF stacks and its coupling to displacements of the counteranions X$^{-}$. These anion shifts, which lift the inversion symmetry enabling ferroelectric order to develop, determine the 3D charge pattern without ambiguity. Evidence is found for another anomaly for both materials at $T_{int}$ $simeq$ 0.6 $cdot$ $T_{CO}$ indicative of a phase transition related to the charge ordering.
61 - T. Mizokawa , D. I. Khomskii , 1999
We have explored spin, charge and orbitally ordered states in La1-xSrxMnO3 (0 < x < 1/2) using model Hartree-Fock calculations on d-p-type lattice models. At x=1/8, several charge and orbitally modulated states are found to be stable and almost degenerate in energy with a homogeneous ferromagnetic state. The present calculation indicates that a ferromagnetic state with a charge modulation along the c-axis which is consistent with the experiment by Yamada et al. might be responsible for the anomalous behavior around x = 1/8.
We present the results of measurements of the dc-magnetic susceptibility chi(T) and the 23Na-NMR response of Na_{0.70}CoO_{2} at temperatures between 50 and 340 K. The chi(T) data suggest that for T > 75 K, the Co ions adopt an effective configuration of Co^{3.4+}. The 23Na-NMR response reveals pronounced anomalies near 250 and 295 K, but no evidence for magnetic phase transitions is found in chi(T). Our data suggest the onset of a dramatic change in the Co 3d-electron spin dynamics at 295 K. This process is completed at 230 K. Our results maybe interpreted as evidence for either a tendency to electron localization or an unconventional charge-density wave phenomenon within the cobalt oxide layer, CoO_2, 3d electron system near room temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا