Do you want to publish a course? Click here

Charge stripes seen with x-rays in La_(1.45)Nd_(0.4)Sr_(0.15)CuO_(4)

139   0   0.0 ( 0 )
 Added by Thomas Niemoeller
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Superstructure reflections due to the ordering of holes into stripes in La_(1.45)Nd_(0.4)Sr_(0.15)CuO_4 have been studied with high energy x-ray diffraction. These reflections have been observed clearly for the first time in a sample which is superconducting at low temperatures (T_c = 10 K). The stripe peaks vanish above 62(5) K whereas the magnetic signal of the stripe ordering which has been seen with neutrons before is already suppressed at 45 K. Our results confirm that the ordering of spins and holes is driven by the charges as it is found in the case of La_(1.6-x)Nd_(0.4)Sr_(x)CuO_(4) at the doping level of x = 0.12.



rate research

Read More

Resistivity and magnetization measurements are used for studying the transverse sliding of AF domain boundaries in lightly doped La_{2-x}Sr_{x}CuO_{4}. We discuss that it is the freezing of the transverse boundary motion that is responsible for the appearance of ``spin-glass features at low temperatures.
380 - X. F. Sun 2009
To investigate the validity of the Wiedemann-Franz (WF) law in disordered but metallic cuprates, the low-temperature charge and heat transport properties are carefully studied for a series of impurity-substituted and carrier-overdoped La_{1.8}Sr_{0.2}Cu_{1-z}M_zO_4 (M = Zn or Mg) single crystals. With moderate impurity substitution concentrations of z = 0.049 and 0.082 (M = Zn), the resistivity shows a clear metallic behavior at low temperature and the WF law is confirmed to be valid. With increasing impurity concentration to z = 0.13 (M = Zn) or 0.15 (M = Mg), the resistivity shows a low-T upturn but its temperature dependence indicates a finite conductivity in the T to 0 limit. In this weakly-localized metallic state that is intentionally achieved in the overdoped regime, a {it negative} departure from the WF law is found, which is opposite to the theoretical expectation.
Recently, advances in film synthesis methods have enabled a study of extremely overdoped $La_{2-x}Sr_{x}CuO_{4}$. This has revealed a surprising behavior of the superfluid density as a function of doping and temperature, the explanation of which is vividly debated. One popular class of models posits electronic phase separation, where the superconducting phase fraction decreases with doping, while some competing phase (e.g. ferromagnetic) progressively takes over. A problem with this scenario is that all the way up to the dome edge the superconducting transition remains sharp, according to mutual inductance measurements. However, the physically relevant scale is the Pearl penetration depth, $Lambda_{P}$, and this technique probes the sample on a length scale $L$ that is much larger than $Lambda_{P}$. In the present paper, we use local scanning SQUID measurements that probe the susceptibility of the sample on the scale $L << Lambda_{P}$. Our SQUID maps show uniform landscapes of susceptibility and excellent overall agreement of the local penetration depth data with the bulk measurements. These results contribute an important piece to the puzzle of how high-temperature superconductivity vanishes on the overdoped side of the cuprates phase diagram.
We have performed zero-field muon spin rotation measurements on single crystals of La_{2-x}Sr_{x}CuO_{4} to search for spontaneous currents in the pseudo-gap state. By comparing measurements on materials across the phase diagram, we put strict upper limits on any possible time-reversal symmetry breaking fields that could be associated with the pseudo-gap. Comparison between experimental limits and proposed circulating current states effectively eliminates the possibility that such states exist in this family of materials.
The pairing state symmetry of the electron-doped cuprate superconductors is thought to be s-wave in nature, in contrast with their hole-doped counterparts which exhibit a d-wave symmetry. We re-examine this issue based on recent improvements in our electron-doped materials and our measurement techniques. We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth of Pr_(2-x)Ce_(x)CuO_(4-y) and Nd_(2-x)Ce_(x)CuO_(4-y) crystals. Our data strongly suggest that the pairing symmetry in these materials is not s-wave.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا