Do you want to publish a course? Click here

Surface Reconstructions and Bonding via the Electron Localization Function: The Case of Si(001)

83   0   0.0 ( 0 )
 Added by Lorenzo De Santis
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

The bonding pattern of a covalent semiconductor is disrupted when a surface is cut while keeping a rigid (truncated bulk) geometry. The covalent bonds are partly reformed (with a sizeable energy gain) when reconstruction is allowed. We show that the ``electron localization function (ELF)---applied within a first--principles pseudopotential framework---provides un unprecedented insight into the bonding mechanisms. In the unreconstructed surface one detects a partly metallic character, which disappears upon reconstruction. In the surface reformed bonds, the ELF sharply visualizes strongly paired electrons, similar in character to those of the bulk bonds.



rate research

Read More

Off-lattice Grand Canonical Monte Carlo simulations of the clean diamond (111) surface, based on the effective many-body Brenner potential, yield the $(2times1)$ Pandey reconstruction in agreement with emph{ab-initio} calculations and predict the existence of new meta-stable states, very near in energy, with all surface atoms in three-fold graphite-like bonding. We believe that the long-standing debate on the structural and electronic properties of this surface could be solved by considering this type of carbon-specific configurations.
Building on our earlier study, we examine the kinetic barriers to decomposition of alane, AlH$_3$, on the Si(001) surface, using the nudged elastic band (NEB) approach within DFT. We find that the initial decomposition to AlH with two H atoms on the surface proceeds without a significant barrier. There are several pathways available to lose the final hydrogen, though these present barriers of up to 1 eV. Incorporation is more challenging, with the initial structures less stable in several cases than the starting structures, just as was found for phosphorus. We identify a stable route for Al incorporation following selective surface hydrogen desorption (e.g. by STM tip). The overall process parallels PH$_3$, and indicates that atomically precise acceptor doping should be possible.
111 - S. R. Schofield 2003
Dimer vacancy (DV) defect complexes in the Si(001)2x1 surface were investigated using high-resolution scanning tunneling microscopy and first principles calculations. We find that under low bias filled-state tunneling conditions, isolated split-off dimers in these defect complexes are imaged as pairs of protrusions while the surrounding Si surface dimers appear as the usual bean-shaped protrusions. We attribute this to the formation of pi-bonds between the two atoms of the split-off dimer and second layer atoms, and present charge density plots to support this assignment. We observe a local brightness enhancement due to strain for different DV complexes and provide the first experimental confirmation of an earlier prediction that the 1+2-DV induces less surface strain than other DV complexes. Finally, we present a previously unreported triangular shaped split-off dimer defect complex that exists at SB-type step edges, and propose a structure for this defect involving a bound Si monomer.
Studies on oxide quasi-two dimensional electron gas (q2DEG) have been a playground for the discovery of novel and sometimes unexpected phenomena, like the reported magnetism at the surface and at the interface between LaAlO$_{3}$ and SrTiO$_{3}$ non-magnetic materials. However, magnetism in this system is weak and there are evidences of a not intrinsic origin. Here, by using in-situ high-resolution angle resolved photoemission we demonstrate that ferromagnetic EuTiO$_{3}$, the magnetic counterpart of SrTiO$_{3}$ in the bulk, hosts a q2DEG at its (001) surface. This is confirmed by density functional theory calculations with Hubbard U terms in the presence of oxygen divacancies in various configurations, all of them leading to a spin-polarized q2DEG related to the ferromagnetic order of Eu-4f magnetic moments. The results suggest EuTiO$_{3}$(001) as a new material platform for oxide q2DEGs, characterized by broken inversion and time reversal symmetries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا