Do you want to publish a course? Click here

Polyfluorene as a model system for space-charge-limited conduction

126   0   0.0 ( 0 )
 Added by Suchi Guha
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ethyl-hexyl substituted polyfluorene (PF) with its high level of molecular disorder can be described very well by one-carrier space-charge-limited conduction for a discrete set of trap levels with energy $sim$ 0.5 eV above the valence band edge. Sweeping the bias above the trap-filling limit in the as-is polymer generates a new set of exponential traps, which is clearly seen in the density of states calculations. The trapped charges in the new set of traps have very long lifetimes and can be detrapped by photoexcitation. Thermal cycling the PF film to a crystalline phase prevents creation of additional traps at higher voltages.



rate research

Read More

152 - S. A. Khrapak 2021
A vibrational model of heat transfer in simple liquids with soft pairwise interatomic interactions is discussed. A general expression is derived, which involves an averaging over the liquid collective mode excitation spectrum. The model is applied to quantify heat transfer in a dense Lennard-Jones liquid and a strongly coupled one-component plasma. Remarkable agreement with the available numerical results is documented. A similar picture does not apply to the momentum transfer and shear viscosity of liquids.
As is well known, the fluctuations from a stable stationary nonequilibrium state are described by a linearized nonhomogeneous Boltzmann-Langevin equation. The stationary state itself may be described by a nonlinear Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there is actually a unique way to obtain a linear equation for the fluctuations. In the present paper we treat as an example an analytical theory of nonequilibrium shot noise in a diffusive conductor under the space charge limited regime. Our approach is compared with that of Schomerus, Mishchenko and Beenakker [Phys. Rev. B 60, 5839 (1999)]. We find some difference between the present theory and the approach of their paper and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the theory of fluctuation phenomena in a nonequilibrium electron gas.
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte Carlo (MC) simulations to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB) which for a specific set of parameters sustains three solid phases: honeycomb, oblique and triangular. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by heating. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common believe and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as linear strip followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions which enables the dominance of stabilizing energy over the destabilizing surface energy. The nuclei of stable oblique phase are wetted by intermediate order particles which minimizes the surface free energy. We observe different pathways for pressure and temperature induced transitions.
Granulation is a ubiquitous process crucial for many products ranging from food and care products to pharmaceuticals. Granulation is the process in which a powder is mixed with a small amount of liquid (binder) to form solid agglomerates surrounded by air. By contrast, at low solid volume fractions {phi}, the mixing of solid and liquid produces suspensions. At intermediate {phi}, either granules or dense suspensions are produced, depending on the applied stress. We address the question of how and when high shear mixing can lead to the formation of jammed, non-flowing granules as {phi} is varied. In particular, we measure the shear rheology of a model system - a suspension of glass beads with an average diameter of $sim$ 7 {mu}m - at solid volume fractions {phi} $gtrsim$ 0.40. We show that recent insights into the role of inter-particle friction in suspension rheology allow us to use flow data to predict some of the boundaries between different types of granulation as {phi} increases from $sim$ 0.4 towards and beyond the maximum packing point of random close packing.
Many high power electronic devices operate in a regime where the current they draw is limited by the self-fields of the particles. This space-charge-limited current poses particular challenges for numerical modeling where common techniques like over-emission or Gauss Law are computationally inefficient or produce nonphysical effects. In this paper we show an algorithm using the value of the electric field in front of the surface instead of attempting to zero the field at the surface, making the algorithm particularly well suited to both electromagnetic and parallel implementations of the PIC algorithm. We show how the algorithm is self-consistent within the framework of finite difference (for both electrostatics and electromagnetics). We show several 1D and 2D benchmarks against both theory and previous computational results. Finally we show application in 3D to high power microwave generation in a 13 GHz magnetically insulated line oscillator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا