Do you want to publish a course? Click here

Magnetic and structural study of Cu-doped TiO2 thin films

132   0   0.0 ( 0 )
 Added by Mario Renter\\'ia
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transparent pure and Cu-doped (2.5, 5 and 10 at. %) anatase TiO2 thin films were grown by pulsed laser deposition technique on LaAlO3 substrates. The samples were structurally characterized by X-ray absorption spectroscopy and X-ray diffraction. The magnetic properties were measured using a SQUID. All films have a FM-like behaviour. In the case of the Cu-doped samples, the magnetic cycles are almost independent of the Cu concentration. Cu atoms are forming CuO and/or substituting Ti in TiO2. The thermal treatment in air promotes the CuO segregation. Since CuO is antiferromagnetic, the magnetic signals present in the films could be assigned to this Cu substitutionally replacing cations in TiO2.



rate research

Read More

We studied the structural and magnetic properties of FeC~thin films deposited by co-sputtering of Fe and C targets in a direct current magnetron sputtering (dcMS) process at a substrate temperature (Ts) of 300, 523 and 773,K. The structure and morphology was measured using x-ray diffraction (XRD), x-ray absorption near edge spectroscopy (XANES) at Fe $L$ and C $K$-edges and atomic/magnetic force microscopy (AFM, MFM), respectively. An ultrathin (3,nm) $^{57}$FeC~layer, placed between relatively thick FeC~layers was used to estimate Fe self-diffusion taking place during growth at different Ts~using depth profiling measurements. Such $^{57}$FeC~layer was also used for $^{57}$Fe conversion electron M{o}ssbauer spectroscopy (CEMS) and nuclear resonance scattering (NRS) measurements, yielding the magnetic structure of this ultrathin layer. We found from XRD measurements that the structure formed at low Ts~(300,K) is analogous to Fe-based amorphous alloy and at high Ts~(773,K), pre-dominantly a tifc~phase has been formed. Interestingly, at an intermediate Ts~(523,K), a clear presence of tefc~(along with tifc~and Fe) can be seen from the NRS spectra. The microstructure obtained from AFM images was found to be in agreement with XRD results. MFM images also agrees well with NRS results as the presence of multi-magnetic components can be clearly seen in the sample grown at Ts~= 523,K. The information about the hybridization between Fe and C, obtained from Fe $L$ and C $K$-edges XANES also supports the results obtained from other measurements. In essence, from this work, experimental realization of tefc~has been demonstrated. It can be anticipated that by further fine-tuning the deposition conditions, even single phase tefc~phase can be realized which hitherto remains an experimental challenge.
We report measurements on yttrium iron garnet (YIG) thin films grown on both gadolinium gallium garnet (GGG) and yttrium aluminium garnet (YAG) substrates, with and without thin Pt top layers. We provide three principal results: the observation of an interfacial region at the Pt/YIG interface, we place a limit on the induced magnetism of the Pt layer and confirm the existence of an interfacial layer at the GGG/YIG interface. Polarised neutron reflectometry (PNR) was used to give depth dependence of both the structure and magnetism of these structures. We find that a thin film of YIG on GGG is best described by three distinct layers: an interfacial layer near the GGG, around 5 nm thick and non-magnetic, a magnetic bulk phase, and a non-magnetic and compositionally distinct thin layer near the surface. We theorise that the bottom layer, which is independent of the film thickness, is caused by Gd diffusion. The top layer is likely to be extremely important in inverse spin Hall effect measurements, and is most likely Y2O3 or very similar. Magnetic sensitivity in the PNR to any induced moment in the Pt is increased by the existence of the Y2O3 layer; any moment is found to be less than 0.02 uB/atom.
The electronic and magnetic properties of transition metal dichalcogenides are known to be extremely sensitive to their structure. In this paper we study the effect of structure on the electronic and magnetic properties of mono- and bilayer $VSe_2$ films grown using molecular beam epitaxy. $VSe_2$ has recently attracted much attention due to reports of emergent ferromagnetism in the 2D limit. To understand this important compound, high quality 1T and distorted 1T films were grown at temperatures of 200 $^text{o}$C and 450 $^text{o}$C respectively and studied using 4K Scanning Tunneling Microscopy/Spectroscopy. The measured density of states and the charge density wave (CDW) patterns were compared to band structure and phonon dispersion calculations. Films in the 1T phase reveal different CDW patterns in the first layer compared to the second. Interestingly, we find the second layer of the 1T-film shows a CDW pattern with 4a $times$ 4a periodicity which is the 2D version of the bulk CDW observed in this compound. Our phonon dispersion calculations confirm the presence of a soft phonon at the correct wavevector that leads to this CDW. In contrast, the first layer of distorted 1T phase films shows a strong stripe feature with varying periodicities, while the second layer displays no observable CDW pattern. Finally, we find that the monolayer 1T $VSe_2$ film is weakly ferromagnetic, with ~ $3.5 {mu}_B$ per unit similar to previous reports.
We combined photoelemission spectroscopy with first-principle calculations to investigate structural and electronic properties of SrTiO$_{3}$ doped with Ni impurities. In SrTiO$_{3}$ polycrystalline thin films, grown by magnetron sputtering, the mean size of the crystallites increases with the concentration of Ni. To determine the electronic band structure of SrTiO$_{3}$ films doped with Ni, high quality ordered pristine and SrTiO3:Ni$_{x}$ films with x=0.06 and 0.12 were prepared by pulsed laser deposition. Electronic band structure calculations for the ground state, as well as one-step model photoemission calculations, which were obtained by means of the Korringa-Khon-Rostoker Greenss function method, predicted the formation of localised $3d$-impurity bands in the band gap of SrTiO$_{3}$ close to the valence band maxima. The measured valence bands at the resonance Ni2p excitation and band dispersion confirm these findings.
The correlation between magnetic and structural properties of Co_{2} FeAl (CFA) thin films of different thickness (10 nm<d< 100 nm) grown at room temperature on MgO-buffered Si/SiO2 substrates and annealed at 600lyxmathsym{textdegree}C has been studied. XRD measurements revealed an (011) out-of-plane texture growth of the films. The deduced lattice parameter increases with the film thickness. Moreover, pole figures showed no in-plane preferential growth orientation. The magneto-optical Kerr effect hysteresis loops showed the presence of a weak in-plane uniaxial anisotropy with a random easy axis direction. The coercive field measured with an applied field along the easy axis direction and the uniaxial anisotropy field increase linearly with the inverse of the CFA thickness. The microstrip line ferromagnetic resonance measurements for in-plane and perpendicular applied magnetic fields revealed that the effective magnetization and the uniaxial in-palne anisotropy field follow a linear variation versus the inverse CFA thickness. This allows deriving a perpendicular surface anisotropy coefficient of -1.86 erg/cm2
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا