Do you want to publish a course? Click here

Observation of a two-dimensional spin-lattice in non-magnetic semiconductor heterostructures

98   0   0.0 ( 0 )
 Added by Arindam Ghosh
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tunable magnetic interactions in high-mobility nonmagnetic semiconductor heterostructures are centrally important to spin-based quantum technologies. Conventionally, this requires incorporation of magnetic impurities within the two-dimensional (2D) electron layer of the heterostructures, which is achieved either by doping with ferromagnetic atoms, or by electrostatically printing artificial atoms or quantum dots. Here we report experimental evidence of a third, and intrinsic, source of localized spins in high-mobility GaAs/AlGaAs heterostructures, which are clearly observed in the limit of large setback distance (=80 nm) in modulation doping. Local nonequilibrium transport spectroscopy in these systems reveals existence of multiple spins, which are located in a quasi-regular manner in the 2D Fermi sea, and mutually interact at temperatures below 100 milliKelvin via the Ruderman-Kittel-Kasuya-Yosida (RKKY) indirect exchange. The presence of such a spin-array, whose microscopic origin appears to be disorder-bound, simulates a 2D lattice-Kondo system with gate-tunable energy scales.

rate research

Read More

145 - C. Siegert , A. Ghosh , M. Pepper 2007
We show the existence of intrinsic localized spins in mesoscopic high-mobility GaAs/AlGaAs heterostructures. Non-equilibrium transport spectroscopy reveals a quasi-regular distribution of the spins, and indicates that the spins interact indirectly via the conduction electrons. The interaction between spins manifests in characteristic zero-bias anomaly near the Fermi energy, and indicates gate voltage-controllable magnetic phases in high-mobility heterostructures. To address this issue further, we have also designed electrostatically tunable Hall devices, that allow a probing of Hall characteristics at the active region of the mesoscopic devices. We show that the zero field Hall coefficient has an anomalous contribution, which can be attributed to scattering by the localized spins. The anomalous contribution can be destroyed by an increase in temperature, source drain bias, or field range.
Two dimensional heterostructures are likely to provide new avenues for the manipulation of magnetization that is crucial for spintronics or magnetoelectronics. Here, we demonstrate that optical spin pumping can generate a large effective magnetic field in two dimensional MoSe2/WSe2 heterostructures. We determine the strength of the generated field by polarization-resolved measurement of the interlayer exciton photoluminescence spectrum: the measured splitting exceeding 10 milli-electron volts (meV) between the emission originating from the two valleys corresponds to an effective magnetic field of ~ 30 T. The strength of this optically induced field can be controlled by the excitation light polarization. Our finding opens up new possibilities for optically controlled spintronic devices based on van der Waals heterostructures.
Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between a one-dimensional (1D) semiconductor (Sm) with strong SOC and a superconductor (S) hosts Majorana modes with nontrivial topological properties [5-8]. Recently, epitaxial growth of Al on InAs nanowires was shown to yield a high quality S-Sm system with uniformly transparent interfaces [9] and a hard induced gap, indicted by strongly suppressed sub gap tunneling conductance [10]. Here we report the realization of a two-dimensional (2D) InAs/InGaAs heterostructure with epitaxial Al, yielding a planar S-Sm system with structural and transport characteristics as good as the epitaxial wires. The realization of 2D epitaxial S-Sm systems represent a significant advance over wires, allowing extended networks via top-down processing. Among numerous potential applications, this new material system can serve as a platform for complex networks of topological superconductors with gate-controlled Majorana zero modes [1-4]. We demonstrate gateable Josephson junctions and a highly transparent 2D S-Sm interface based on the product of excess current and normal state resistance.
98 - Pingfan Gu , Qinghai Tan , Yi Wan 2019
Quantum interference gives rise to the asymmetric Fano resonance line shape when the final states of an electronic transition follows within a continuum of states and a discrete state, which has significant applications in optical switching and sensing. The resonant optical phenomena associated with Fano resonance have been observed by absorption spectra, Raman spectra, transmission spectra, etc., but have rarely been reported in photoluminescence (PL) spectroscopy. In this work, we performed spectroscopic studies on layered chromium thiophosphate (CrPS4), a promising ternary antiferromagnetic semiconductor with PL in near-infrared wavelength region and observed Fano resonance when CrPS4 experiences phase transition into the antiferromagnetic state below Neel temperature (38 K). The photoluminescence of the continuum states results from the d band transitions localized at Cr3+ ions, while the discrete state reaches saturation at high excitation power and can be enhanced by the external magnetic field, suggesting it is formed by an impurity level from extra atomic phosphorus. Our findings provide insights into the electronic transitions of CrPS4 and their connection to its intrinsic magnetic properties.
Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. Here, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe2-WSe2 heterostructure. Using nondegenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weakly dependent on the twist angle between layers. Our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in 2D spin/valleytronic devices for storing and processing information.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا