Do you want to publish a course? Click here

Theoretical Study on Superconductivity in Boron-Doped Diamond

306   0   0.0 ( 0 )
 Added by Yukinori Ohta
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider superconductivity in boron (B) doped diamond using a simplified model for the valence band of diamond. We treat the effects of substitutional disorder of B ions by the coherent potential approximation (CPA) and those of the attractive force between holes by the ladder approximation under the assumption of instantaneous interaction with the Debye cutoff. We thereby calculate the quasiparticle life time, the evolution of the single-particle spectra due to doping, and the effect of disorder on the superconducting critical temperature $T_c$. We in particular compare our results with those for supercell calculations to see the role of disorder, which turns out to be of crucial importance to $T_c$.

rate research

Read More

117 - K.-W. Lee , W. E. Pickett 2004
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger than the corresponding quantity in MgB2 that drives its high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB2.
175 - Franck Dahlem 2009
Scanning tunneling spectroscopies are performed below 100~mK on nano-crystalline boron-doped diamond films characterized by Transmission Electron Microscopy and transport measurements. We demonstrate a strong correlation between the local superconductivity strength and the granular structure of the films. The study of the spectral shape, amplitude and temperature dependence of the superconductivity gap enables us to differentiate intrinsically superconducting grains that follow the BCS model, from grains showing a different behavior involving the superconducting proximity effect.
180 - M. Kriener , T. Muranaka , J. Kato 2008
The discoveries of superconductivity in heavily boron-doped diamond (C:B) in 2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily-boron doped silicon carbide (SiC:B). The sample used for that study consists of cubic and hexagonal SiC phase fractions and hence this lead to the question which of them participates in the superconductivity. Here we focus on a sample which mainly consists of hexagonal SiC without any indication for the cubic modification by means of x-ray diffraction, resistivity, and ac susceptibility.
This work investigates the high-pressure structure of freestanding superconducting ($T_{c}$ = 4.3,K) boron doped diamond (BDD) and how it affects the electronic and vibrational properties using Raman spectroscopy and x-ray diffraction in the 0-30,GPa range. High-pressure Raman scattering experiments revealed an abrupt change in the linear pressure coefficients and the grain boundary components undergo an irreversible phase change at 14,GPa. We show that the blue shift in the pressure-dependent vibrational modes correlates with the negative pressure coefficient of $T_{c}$ in BDD. The analysis of x-ray diffraction data determines the equation of state of the BDD film, revealing a high bulk modulus of $B_{0}$=510$pm$28,GPa. The comparative analysis of high-pressure data clarified that the sp$^{2}$ carbons in the grain boundaries transform into hexagonal diamond.
Recent theoretical and experimental studies of hydrogen-rich materials at megabar pressures (i.e., >100 GPa) have led to the discovery of very high-temperature superconductivity in these materials. Lanthanum superhydride LaH$_{10}$ has been of particular focus as the first material to exhibit a superconducting critical temperature (T$_c$) near room temperature. Experiments indicate that the use of ammonia borane as the hydrogen source can increase the conductivity onset temperatures of lanthanum superhydride to as high as 290 K. Here we examine the doping effects of B and N atoms on the superconductivity of LaH$_{10}$ in its fcc (Fm-3m) clathrate structure at megabar pressures. Doping at H atomic positions strengthens the H$_{32}$ cages of the structure to give higher phonon frequencies that enhance the Debye frequency and thus the calculated T$_c$. The predicted T$_c$ can reach 288 K in LaH$_{9.985}$N$_{0.015}$ within the average high-symmetry structure at 240 GPa.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا