Do you want to publish a course? Click here

Origin of Kinks in Energy Dispersion of Strongly Correlated Matter

312   0   0.0 ( 0 )
 Added by Kazue Matsuyama
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the origin of ubiquitous low energy kinks found in Angle Resolved Photoemission (ARPES) experiments in a variety of correlated matter. Such kinks are unexpected from weakly interacting electrons and hence identifying their origin should lead to fundamental insights in strongly correlated matter. We devise a protocol for extracting the kink momentum and energy from the experimental data which relies solely on the two asymptotic tangents of each dispersion curve, away from the feature itself. It is thereby insensitive to the different shapes of the kinks as seen in experiments. The body of available data is then analyzed using this method. We proceed to discuss two alternate theoretical explanations of the origin of the kinks. Some theoretical proposals invoke local Bosonic excitations (Einstein phonons or other modes with spin or charge character), located exactly at the energy of observed kinks, leading to a momentum independent self energy of the electrons. A recent alternate is the theory of extremely correlated Fermi liquids (ECFL). This theory predicts kinks in the dispersion arising from a momentum dependent self energy of correlated electrons. We present the essential results from both classes of theories, and identify experimental features that can help distinguish between the two mechanisms. The ECFL theory is found to be consistent with currently available data on kinks in the nodal direction of cuprate superconductors, but conclusive tests require higher resolution energy distribution curve data.



rate research

Read More

68 - K. Byczuk , M. Kollar , K. Held 2006
The properties of condensed matter are determined by single-particle and collective excitations and their interactions. These quantum-mechanical excitations are characterized by an energy E and a momentum hbar k which are related through their dispersion E_k. The coupling of two excitations may lead to abrupt changes (kinks) in the slope of the dispersion. Such kinks thus carry important information about interactions in a many-body system. For example, kinks detected at 40-70 meV below the Fermi level in the electronic dispersion of high-temperature superconductors are taken as evidence for phonon or spin-fluctuation based pairing mechanisms. Kinks in the electronic dispersion at binding energies ranging from 30 to 800 meV are also found in various other metals posing questions about their origins. Here we report a novel, purely electronic mechanism yielding kinks in the electron dispersions. It applies to strongly correlated metals whose spectral function shows well separated Hubbard subbands and central peak as, for example, in transition metal-oxides. The position of the kinks and the energy range of validity of Fermi-liquid (FL) theory is determined solely by the FL renormalization factor and the bare, uncorrelated band structure. Angle-resolved photoemission spectroscopy (ARPES) experiments at binding energies outside the FL regime can thus provide new, previously unexpected information about strongly correlated electronic systems.
Superconductivity develops from an attractive interaction between itinerant electrons that creates electron pairs which condense into a macroscopic quantum state--the superconducting state. On the other hand, magnetic order in a metal arises from electrons localized close to the ionic core and whose interaction is mediated by itinerant electrons. The dichotomy between local moment magnetic order and superconductivity raises the question of whether these two states can coexist and involve the same electrons. Here we show that the single 4f-electron of cerium in CeRhIn5 simultaneously produces magnetism, characteristic of localization, and superconductivity that requires itinerancy. The dual nature of the 4f-electron allows microscopic coexistence of antiferromagnetic order and superconductivity whose competition is tuned by small changes in pressure and magnetic field. Electronic duality contrasts with conventional interpretations of coexisting spin-density magnetism and superconductivity and offers a new avenue for understanding complex states in classes of materials.
The multielectron LDA+GTB approach has been developed to calculate electronic structure of strongly correlated cuprates. At low energies the effective Hamiltonian of the $t - t - t - {t_ bot } - {J^ * } - {J_ bot }$-model has been derived with parameters coming from the ab initio calculation for LSCO. The electronic structure of LSCO has been calculated self-consistently with the short-range antiferromagnetic order for various doping level. Two Lifshitz-type quantum phase transitions with Fermi surface topology changes have been found at dopings $x_{c1}=0.15$ and $x_{c2}=0.24$. Its effect on normal and superconducting properties has been calculated. The interatomic exchange parameter and its pressure dependence has been calculated within LDA+GTB scheme. The magnetic mechanisms of d-wave pairing induced by static and dynamical spin correlations are discussed. Simultaneous treatment of magnetic and phonon pairing results in the conclusion that both contributions are of the same order. For two layer cuprates like YBCO the interlayer hopping and exchange effects on the electronic structure and doping dependence of $T_c$ is discussed as well as the Coulomb interaction induced mechanism of pairing.
Magnetic interactions are widely believed to play a crucial role in the microscopic mechanism leading to high critical temperature superconductivity. It is therefore important to study the signatures of pairing in the magnetic excitation spectrum of simple models known to show unconventional superconducting tendencies. Using the Density Matrix Renormalization Group technique, we calculate the dynamical spin structure factor $S({bf k},omega)$ of a generalized $t-U-J$ Hubbard model away from half-filling in a two-leg ladder geometry. The addition of $J$ enhances pairing tendencies. We analyze quantitatively the signatures of pairing in the magnetic excitation spectra. We found that the superconducting pair-correlation strength, that can be estimated independently from ground state properties, is closely correlated with the integrated low-energy magnetic spectral weight in the vicinity of $(pi,pi)$. In this wave-vector region, robust spin incommensurate features develop with increasing doping. The branch of the spectrum with rung direction wave-vector $k_{rung}=0$ does not change substantially with doping where pairing dominates, and thus plays a minor role. We discuss the implications of our results for neutron scattering experiments, where the spin excitation dynamics of hole-doped quasi-one dimensional magnetic materials can be measured, and also address implications for recent resonant inelastic X-ray scattering experiments.
Numerical simulations of strongly correlated electron systems suffer from the notorious fermion sign problem which has prevented progress in understanding if systems like the Hubbard model display high-temperature superconductivity. Here we show how the fermion sign problem can be solved completely with meron-cluster methods in a large class of models of strongly correlated electron systems, some of which are in the extended Hubbard model family and show s-wave superconductivity. In these models we also find that on-site repulsion can even coexist with a weak chemical potential without introducing sign problems. We argue that since these models can be simulated efficiently using cluster algorithms they are ideal for studying many of the interesting phenomena in strongly correlated electron systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا