Do you want to publish a course? Click here

Observation of the Nernst signal generated by fluctuating Cooper pairs

228   0   0.0 ( 0 )
 Added by Herve Aubin
 Publication date 2006
  fields Physics
and research's language is English
 Authors A. Pourret




Ask ChatGPT about the research

Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity : an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to an untested theory, these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous superconducting films, the lifetime of Cooper pairs exceeds the elastic lifetime of quasi-particles in a wide temperature range above Tc; consequently, the Cooper pairs Nernst signal dominate the response of the normal electrons well above Tc. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be unambiguously tested. Here, we report on the observation of a Nernst signal in such a superconductor traced deep into the normal state. Since the amplitude of this signal is in excellent agreement with the theoretical prediction, the result provides the first unambiguous case for a Nernst effect produced by short-lived Cooper pairs.



rate research

Read More

A theory of the fluctuation-induced Nernst effect is developed for arbitrary magnetic fields and temperatures beyond the upper critical field line in a two-dimensional superconductor. First, we derive a simple phenomenological formula for the Nernst coefficient, which naturally explains the giant Nernst signal due to fluctuating Cooper pairs. The latter is shown to be large even far from the transition and may exceed by orders of magnitude the Fermi liquid terms. We also present a complete microscopic calculation (which includes quantum fluctuations) of the Nernst coefficient and give its asymptotic dependencies in various regions on the phase diagram. It is argued that the magnitude and the behavior of the Nernst signal observed experimentally in disordered superconducting films can be well-understood on the basis of the superconducting fluctuation theory.
151 - P. Spathis , H. Aubin , A. Pourret 2007
We present a study of the Nernst effect in amorphous 2D superconductor InO$_x$, whose low carrier density implies low phase rigidity and strong superconducting phase fluctuations. Instead of presenting the abrupt jump expected at a BCS transition, the Nernst signal evolves continuously through the superconducting transition as previously observed in underdoped cuprates. This contrasts with the case of Nb$_{0.15}$Si$_{0.85}$, where the Nernst signal due to vortices below T$_{c}$ and by Gaussian fluctuations above are clearly distinct. The behavior of the ghost critical field in InO$_x$ points to a correlation length which does not diverge at $T_c$, a temperature below which the amplitude fluctuations freeze, but phase fluctuations survive.
Temperature dependencies of excess conductivity, Sigma, have been studied in detail for three FeSe_{0.94} textured polycrystalline samples prepared by partial melting and solid state reaction. It was revealed that both Sigma and its temperature dependence are extremely sensitive to the method of sample preparation. Then, it was shown that in the range from the superconducting transition temperature Tc ~ 9 K up to the characteristic temperature T_01 ~ 19 K, Sigma(T) obeys the classical fluctuation theories of Aslamazov-Larkin (AL) and Hikami-Larkin (Maki-Thompson (MT) term) pointing to the existence of fluctuating Cooper pairs in FeSe at temperatures exceeding double Tc. Like in cuprates, AL-MT crossover at T_0 < T_{01} is observed, which means the appearance of 3D-2D dimensional transition at this temperature. This allows us to determine the coherence length along the c-axis, Xi_c(0) ~ 3 A, and a set of additional samples parameters, including the phase relaxation time, Tau_{Phi}, of fluctuating Cooper pairs, within a simple two-dimensional free-carrier picture. It was shown that Tau_{Phi} in FeSe coincides with that found for YBa2Cu3O7 suggesting that the nature of superconducting fluctuations is very similar for these high-temperature superconductors of different types.
147 - M. Shi , A. Bendounan , E. Razzoli 2008
Angle-resolved photoemission on underdoped La$_{1.895}$Sr$_{0.105}$CuO$_4$ reveals that in the pseudogap phase, the dispersion has two branches located above and below the Fermi level with a minimum at the Fermi momentum. This is characteristic of the Bogoliubov dispersion in the superconducting state. We also observe that the superconducting and pseudogaps have the same d-wave form with the same amplitude. Our observations provide direct evidence for preformed Cooper pairs, implying that the pseudogap phase is a precursor to superconductivity.
A new type of Kondo effect peculiar to unconventional superconductors is studied theoretically by using the Wilsons numerical renormalization group method. In this case, an angular momentum of a Cooper pair plays an important role in the Kondo effect. It produces multichannel exchange couplings with a local spin. Here we focus on a $p_x +i p_y$-wave state which is a full gap system. The calculated impurity susceptibility shows that the local spin is almost quenched by the Kondo effect in the strong coupling region ($T_{rm K}/Delta to infty$), while the ground state is always a spin doublet over all the $T_{rm K}/Delta$ region. Here $T_{rm K}$ and $Delta$ are the Kondo temperature and the superconducting energy gap, respectively. This is different from the s-wave pairing case where the Kondo singlet is realized for large $T_{rm K}/Delta$ values. The strong coupling analysis shows that the $p_x +i p_y$-wave Cooper pair is connected to the Kondo singlet via the orbital dynamics of the paired electrons, generating the spin of the ground state. This type of Kondo effect reflects the symmetry of the conduction electron system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا